On the concavity of Dirichlet's eta function and related functional inequalities

被引:12
作者
Alzer, Horst [1 ]
Kwong, Man Kam [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
关键词
Dirichlet's eta function; Concavity; Functional inequalities; ZETA-FUNCTION;
D O I
10.1016/j.jnt.2014.12.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the strict concavity of Dirichlet's eta function eta(s) = Sigma(infinity)(j=1) (-1)(j-1)/j(n) on (0,infinity). This extends a result of Wang, who proved in 1998 that eta is strictly logarithmically concave on (0, infinity). Several new inequalities satisfied by eta are also presented. Among them is the double-inequality log 2 < eta(x)(1/root x)eta(y)(1/root y)/eta(xy)(1/root xy) < 1, for all x, y is an element of (1, infinity). Both bounds are sharp. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:172 / 196
页数:25
相关论文
共 20 条
[1]  
[Anonymous], 1952, Inequalities
[2]   GRUNBAUMS INEQUALITY FOR BESSEL FUNCTIONS [J].
ASKEY, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 41 (01) :122-124
[3]  
Baricz A., 2007, J INEQUAL PURE APPL, V7
[4]  
BARICZ A, 2005, J INEQUAL PURE APPL, V6
[5]  
Borwein P., 2000, CRC Mathematical Modeling Series, V27, P29
[6]   NEW KIND OF INEQUALITY FOR BESSEL FUNCTIONS [J].
GRUNBAUM, FA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 41 (01) :115-121
[7]  
Lindelof E., 1905, CALCUL RESIDUS SES A
[8]  
Mahajan A., 1979, Publikacije Elektrotehnickog Fakulteta, Serija Matematika i Fizika, P70
[9]   Integral and Series Representations of Riemann's Zeta Function and Dirichlet's Eta Function and a Medley of Related Results [J].
Milgram, Michael S. .
JOURNAL OF MATHEMATICS, 2013, 2013
[10]  
Mitrinovic D., 1970, ANAL INEQUALITIES