STRONG CONVERGENCE THEOREMS BY HYBRID METHODS FOR DEMIMETRIC MAPPINGS IN BANACH SPACES

被引:0
作者
Hojo, Mayumi [1 ]
Takahashi, Wataru [2 ,3 ,4 ]
机构
[1] Shibaura Inst Technol, Ctr Promot Educ Innovat, Fukusa Ku, Minumaku, Saitama 3378570, Japan
[2] Kaohsiung Med Univ, Ctr Fundamental Sci, Kaohsiung 80702, Taiwan
[3] Keio Univ, Keio Res & Educ Ctr Nat Sci, Kouhoku Ku, Yokohama, Kanagawa 2238521, Japan
[4] Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
基金
日本学术振兴会;
关键词
Fixed point; maximal monotone operator; metric resolvent; metric projection; hybrid method; duality mapping; MAXIMAL MONOTONE-OPERATORS; FIXED-POINT THEOREMS; NONEXPANSIVE-MAPPINGS; HILBERT-SPACES; NONLINEAR MAPPINGS; WEAK;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using a new nonlinear mapping called demimetric and the C-Q method, we first prove a strong convergence theorem for finding a fixed point for the mapping in a Banach space which generalizes simultaneously the result by Nakajo and Takahashi [11] and the result of Solodov and Svaiter [13] in a Hilbert space. Furthermore, using the mapping and the shrinking projection method, we prove another strong convergence theorem in a Banach space. We apply these results to obtain well-known and new strong convergence theorems in a Hilbert space, or a Banach space.
引用
收藏
页码:1333 / 1344
页数:12
相关论文
共 20 条