Navier-Stokes limit of Jeffreys type flows

被引:24
作者
Gatti, S
Giorgi, C
Pata, V
机构
[1] Politecn Milan, Dipartmento Matemat F Brioschi, I-20133 Milan, Italy
[2] Univ Ferrara, Dipartimento Matemat, I-44100 Ferrara, Italy
[3] Univ Brescia, Dipartimento Matemat, I-25133 Brescia, Italy
关键词
Jeffreys type models; Navier-Stokes equations; singular limit; global attractors; robust exponential attractors;
D O I
10.1016/j.physd.2005.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze a Jeffreys type model ruling the motion of a viscoelastic polymeric solution with linear memory in a two-dimensional domain with nonslip boundary conditions. For fixed values of the concentrations, we describe the asymptotic dynamics and we prove that, when the scaling parameter in the memory kernel (physically, the Weissenberg number of the flow) tends to zero, the model converges in an appropriate sense to the Navier-Stokes equations. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:55 / 79
页数:25
相关论文
共 24 条
  • [1] Motion of nonlinear visco-elastic fluid
    Agranovich, YY
    Sobolevskii, PE
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (06) : 755 - 760
  • [2] [Anonymous], AM MATH SOC PROVIDEN
  • [3] Astarita G., 1974, Principles of Non-Newtonian Fluid Mechanics
  • [4] Bird R. B., 1987, DYNAMICS POLYM LIQUI, V1
  • [5] CONTI M, IN PRESS INDIANA U M
  • [6] DAFERMOS CM, 1970, ARCH RATION MECH AN, V37, P297
  • [7] Eden A., 1994, Research in Applied Mathematics
  • [8] Fabrie P, 2004, DISCRETE CONT DYN-A, V10, P211
  • [9] Maximum and minimum free energies for a linear viscoelastic material
    Fabrizio, M
    Golden, JM
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2002, 60 (02) : 341 - 381
  • [10] Giorgi C, 1999, INDIANA U MATH J, V48, P1395