A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials

被引:32
作者
Kim, D. [1 ]
Kim, T. [2 ]
机构
[1] Sogang Univ, Dept Math, Seoul 121742, South Korea
[2] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
基金
新加坡国家研究基金会;
关键词
Mathematical Physic; Formal Power Series; Bernoulli Polynomial; Usual Convention; Polylogarithm Function;
D O I
10.1134/S1061920815010057
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider poly-Bernoulli and higher-order poly-Bernoulli polynomials and derive some new and interesting identities of those polynomials by using umbral calculus.
引用
收藏
页码:26 / 33
页数:8
相关论文
共 10 条
[1]  
Araci S., 2012, Advanced Studies in Contemporary Mathematics, V22, P399
[2]  
Ding Dan, 2010, Advanced Studies in Contemporary Mathematics, V20, P7
[3]  
Gaboury S., 2014, [Proceedings of the Jangjeon Mathematical Society, Proceedings of the Jangjeon Mathematical Society(장전수학회 논문집)], V17, P115
[4]  
Kaneko M., 1997, J. Thor. Nombres Bordeaux, V9, P221, DOI [10.5802/jtnb.197, DOI 10.5802/JTNB.197]
[5]  
Kim DS, 2014, ARS COMBINATORIA, V115, P435
[6]  
Kim DS, 2013, ADV STUD THEOR PHYS, V7, P731
[7]   Identities Involving Laguerre Polynomials Derived from Umbral Calculus [J].
Kim, T. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2014, 21 (01) :36-45
[8]  
김태균, 2010, Advanced Studies in Contemporary Mathematics, V20, P23
[9]   A note on poly-Bernoulli numbers and polynomials of the second kind [J].
Kim, Taekyun ;
Kwon, Hyuck In ;
Lee, Sang Hun ;
Seo, Jong Jin .
ADVANCES IN DIFFERENCE EQUATIONS, 2014,
[10]  
Roman S., 1984, Pure and Applied Mathematics, V111