HYPERSPECTRAL PANSHARPENING BASED ON GUIDED FILTER AND DEEP RESIDUAL LEARNING

被引:0
作者
Zheng, Yuxuan [1 ]
Li, Jiaojiao [1 ]
Li, Yunsong [1 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian, Peoples R China
来源
2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019) | 2019年
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Contrast limited adaptive histogram equalization; guided filter; deep residual convolutional neural network; hyperspectral pansharpening; FUSION; IMAGES;
D O I
10.1109/igarss.2019.8899015
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Recently, deep learning technology has gained impressive effectiveness in the field of hyperspectral pansharpening. However, the existing methods with relatively shallow architectures ignores the deep features of hyperspectral image (HSI) and panchromatic (PAN) image, which leads to a limitation of the fusion performance. To address this issue, a novel hyperspectral pansharpening framework based on guided filter and deep residual learning is proposed in this paper. The proposed framework mainly consists of two parts: generating the initial HSI through enhancing spatial information while preserving the original spectral information, and mapping the residuals between the initialized HSI and the reference HSI for further improvement of the fusion accuracy. Experimental results demonstrate that the proposed framework can achieve superior fusion accuracy compared with other state-of-the-art hyperspectral pansharpening methods while providing better edge information.
引用
收藏
页码:616 / 619
页数:4
相关论文
共 12 条
[1]   Improving component substitution pansharpening through multivariate regression of MS plus Pan data [J].
Aiazzi, Bruno ;
Baronti, Stefano ;
Selva, Massimo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3230-3239
[2]   Deep Hyperspectral Image Sharpening [J].
Dian, Renwei ;
Li, Shutao ;
Guo, Anjing ;
Fang, Leyuan .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (11) :5345-5355
[3]   Guided Image Filtering [J].
He, Kaiming ;
Sun, Jian ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (06) :1397-1409
[4]   Processing of Multiresolution Thermal Hyperspectral and Digital Color Data: Outcome of the 2014 IEEE GRSS Data Fusion Contest [J].
Liao, Wenzhi ;
Huang, Xin ;
Van Coillie, Frieke ;
Gautama, Sidharta ;
Pizurica, Aleksandra ;
Philips, Wilfried ;
Liu, Hui ;
Zhu, Tingting ;
Shimoni, Michal ;
Moser, Gabriele ;
Tuia, Devis .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) :2984-2996
[6]   Hyperspectral Pansharpening: A Review [J].
Loncan, Laetitia ;
Almeida, Luis B. ;
Bioucas-Dias, Jose M. ;
Briottet, Xavier ;
Chanussot, Jocelyn ;
Dobigeon, Nicolas ;
Fabre, Sophie ;
Liao, Wenzhi ;
Licciardi, Giorgio A. ;
Simoes, Miguel ;
Tourneret, Jean-Yves ;
Veganzones, Miguel A. ;
Vivone, Gemine ;
Wei, Qi ;
Yokoya, Naoto .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2015, 3 (03) :27-46
[7]   Pansharpening by Convolutional Neural Networks [J].
Masi, Giuseppe ;
Cozzolino, Davide ;
Verdoliva, Luisa ;
Scarpa, Giuseppe .
REMOTE SENSING, 2016, 8 (07)
[8]  
Wald L, 1997, PHOTOGRAMM ENG REM S, V63, P691
[9]   Fast Fusion of Multi-Band Images Based on Solving a Sylvester Equation [J].
Wei, Qi ;
Dobigeon, Nicolas ;
Tourneret, Jean-Yves .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (11) :4109-4121
[10]   Generalized Assorted Pixel Camera: Postcapture Control of Resolution, Dynamic Range, and Spectrum [J].
Yasuma, Fumihito ;
Mitsunaga, Tomoo ;
Iso, Daisuke ;
Nayar, Shree K. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (09) :2241-2253