ON MANNHEIM PARTNER CURVES IN THREE DIMENSIONAL LIE GROUPS

被引:11
|
作者
Gok, Ismail [1 ]
Okuyucu, O. Zeki [2 ]
Ekmekci, Nejat [1 ]
Yayli, Yusuf [1 ]
机构
[1] Ankara Univ, Fac Sci, Dept Math, TR-06100 Ankara, Turkey
[2] Bilecik Seyh Edebali Univ, Fac Sci & Arts, Dept Math, TR-11210 Bilecik, Turkey
关键词
Mannheim curves; Lie groups; HARMONIC CURVATURES; HELICES; SPACE;
D O I
10.18514/MMN.2014.682
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we define Mannheim partner curves in a three dimensional Lie group G with a bi-invariant metric. The main result of the paper is given as (Theorem 4): A curve ff W I R ! G with the Frenet apparatus fT; N; B; ; g is a Mannheim partner curve if and only if 1CH 2 D 1 where , are constants and H is the harmonic curvature function of the curve ff :
引用
收藏
页码:467 / 479
页数:13
相关论文
共 50 条
  • [21] Three dimensional Lie groups of scalar Randers type
    Zhang, Lun
    Huang, Libing
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (03) : 1267 - 1283
  • [22] Frenet Curve Couples in Three Dimensional Lie Groups
    Okuyucu, Osman Zeki
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 133 (03): : 653 - 671
  • [23] Magnetic trajectories in three-dimensional Lie groups
    Turhan, Tunahan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (05) : 2747 - 2758
  • [24] Spinor Frenet Equations in Three Dimensional Lie Groups
    Osman Zeki Okuyucu
    Önder Gökmen Yıldız
    Murat Tosun
    Advances in Applied Clifford Algebras, 2016, 26 : 1341 - 1348
  • [25] Parabolic curves in Lie groups
    Pauley, Michael
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (05)
  • [26] Mannheim curves and their partner curves in Minkowski 3-space E13
    Elsharkawy, Ayman
    Elshenhab, Ahmed M.
    DEMONSTRATIO MATHEMATICA, 2022, 55 (01) : 798 - 811
  • [27] LEGENDRE CURVES ON THREE-DIMENSIONAL HEISENBERG GROUPS
    Sarkar, A.
    Biswas, Dipankar
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2013, 28 (03): : 241 - 248
  • [28] On local isometric embeddings of three-dimensional Lie groups
    Yoshio Agaoka
    Takahiro Hashinaga
    Geometriae Dedicata, 2020, 205 : 191 - 219
  • [29] SPHERICAL INDICATRICES OF A BERTRAND CURVE IN THREE DIMENSIONAL LIE GROUPS
    Cakmak, Ali
    Kiziltug, Sezai
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (02): : 1930 - 1938
  • [30] Sectional and Ricci Curvature for Three-Dimensional Lie Groups
    Thompson, Gerard
    Bhattarai, Giriraj
    JOURNAL OF MATHEMATICS, 2016, 2016