Second SH3 domain of ponsin solved from powder diffraction

被引:37
|
作者
Margiolaki, Irene
Wright, Jonathan P.
Wilmanns, Matthias
Fitch, Andrew N.
Pinotsis, Nikos
机构
[1] European Synchrotron Radiat Facil, F-38043 Grenoble, France
[2] DESY, European Mol Biol Lab, D-22603 Hamburg, Germany
关键词
MOLECULAR-CRYSTAL STRUCTURES; EGG-WHITE LYSOZYME; REFINEMENT; RESOLUTION; MODEL; RECOGNITION; REPLACEMENT; QUALITY;
D O I
10.1021/ja073846c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Determination of protein crystal structures is dependent on the growth of high-quality single crystals, a process that is not always successful. Optimum crystallization conditions must be systematically sought for, and microcrystalline powders are frequently obtained in failed attempts to grow the desired crystal. In materials science, structures of samples ranging from ceramics, pharmaceuticals, zeolites, etc., can nowadays be solved, almost routinely, from powdered samples, and there seems to be no fundamental reason, except the sheer size and complexity of the structures involved, why powder diffraction should not be employed to solve structures of small proteins. Indeed, recent work has shown that the high-quality powder diffraction data can be used in the study of protein crystal structures. We report the solution, model building, and refinement of a 67-residue protein domain crystal structure, with a cell volume of 64 879 angstrom(3), from powder diffraction. The second SH3 domain of ponsin, a protein of high biological significance due to its role in cellular processes, is determined and refined to resolution limits comparable to single-crystal techniques. Our results demonstrate the power and future applicability of the powder technique in structural biology.
引用
收藏
页码:11865 / 11871
页数:7
相关论文
共 50 条
  • [11] Protein context shapes the specificity of SH3 domain-mediated interactions in vivo
    Dionne, Ugo
    Bourgault, Emilie
    Dube, Alexandre K.
    Bradley, David
    Chartier, Francois J. M.
    Dandage, Rohan
    Dibyachintan, Soham
    Despres, Philippe C.
    Gish, Gerald D.
    Pham, N. T. Hang
    Letourneau, Myriam
    Lambert, Jean-Philippe
    Doucet, Nicolas
    Bisson, Nicolas
    Landry, Christian R.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [12] Crystal Structure of the SH3 Domain of ASAP1 in Complex with the Proline Rich Motif (PRM) of MICAL1 Reveals a Unique SH3/PRM Interaction Mode
    Jia, Xuanyan
    Lin, Leishu
    Xu, Shun
    Li, Lingxuan
    Wei, Zhiyi
    Yu, Cong
    Niu, Fengfeng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (02)
  • [13] Bayesian Modeling of the Yeast SH3 Domain Interactome Predicts Spatiotemporal Dynamics of Endocytosis Proteins
    Tonikian, Raffi
    Xin, Xiaofeng
    Toret, Christopher P.
    Gfeller, David
    Landgraf, Christiane
    Panni, Simona
    Paoluzi, Serena
    Castagnoli, Luisa
    Currell, Bridget
    Seshagiri, Somasekar
    Yu, Haiyuan
    Winsor, Barbara
    Vidal, Marc
    Gerstein, Mark B.
    Bader, Gary D.
    Volkmer, Rudolf
    Cesareni, Gianni
    Drubin, David G.
    Kim, Philip M.
    Sidhu, Sachdev S.
    Boone, Charles
    PLOS BIOLOGY, 2009, 7 (10)
  • [14] Crystal structure of the SH3 domain of growth factor receptor-bound protein 2
    Bolgov, Alexandr
    Korban, Svetlana
    Luzik, Dmitrii
    Zhemkov, Vladimir
    Kim, Meewhi
    Rogacheva, Olga
    Bezprozvanny, Ilya
    ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2020, 76 : 263 - 270
  • [15] Crystal structure of the SH3 domain of human Lyn non-receptor tyrosine kinase
    Berndt, Sandra
    Gurevich, Vsevolod V.
    Iverson, T. M.
    PLOS ONE, 2019, 14 (04):
  • [16] Predicting physiologically relevant SH3 domain mediated protein-protein interactions in yeast
    Jain, Shobhit
    Bader, Gary D.
    BIOINFORMATICS, 2016, 32 (12) : 1865 - 1872
  • [17] The Binding of Syndapin SH3 Domain to Dynamin Proline-rich Domain Involves Short and Long Distance Elements
    Luo, Lin
    Xue, Jing
    Kwan, Ann
    Gamsjaeger, Roland
    Wielens, Jerome
    von Kleist, Lisa
    Cubeddu, Liza
    Guo, Zhong
    Stow, Jennifer L.
    Parker, Michael W.
    Mackay, Joel P.
    Robinson, Phillip J.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (18) : 9411 - 9424
  • [18] Understanding the mechanism of binding between Gab2 and the C terminal SH3 domain from Grb2
    Toto, Angelo
    Bonetti, Daniela
    De Simone, Alfonso
    Gianni, Stefano
    ONCOTARGET, 2017, 8 (47) : 82344 - 82351
  • [19] Modulation of peroxisomal import by the PEX13 SH3 domain and a proximal FxxxF binding motif
    Gaussmann, Stefan
    Peschel, Rebecca
    Ott, Julia
    Zak, Krzysztof M.
    Sastre, Judit
    Delhommel, Florent
    Popowicz, Grzegorz M.
    Boekhoven, Job
    Schliebs, Wolfgang
    Erdmann, Ralf
    Sattler, Michael
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [20] Binding of a proline-independent hydrophobic motif by the Candida albicans Rvs167-3 SH3 domain
    Gkourtsa, Areti
    van den Burg, Janny
    Avula, Teja
    Hochstenbach, Frans
    Distel, Ben
    MICROBIOLOGICAL RESEARCH, 2016, 190 : 27 - 36