Forest species recognition based on dynamic classifier selection and dissimilarity feature vector representation

被引:26
作者
Martins, J. G. [1 ]
Oliveira, L. S. [1 ]
Britto, A. S., Jr. [2 ]
Sabourin, R. [3 ]
机构
[1] Fed Univ Parana UFPR, R Rua Cel Francisco H dos Santos 100, BR-81531990 Curitiba, Parana, Brazil
[2] Pontifical Catholic Univ Parana PUCPR, BR-80215901 Curitiba, Parana, Brazil
[3] Univ Quebec, Ecole Technol Super, Montreal, PQ H3C 3P8, Canada
关键词
Forest species recognition; Microscopic images; Dynamic classifier selection; Dissimilarity representation; Texture analysis; LINE SIGNATURE VERIFICATION; TEXTURE CLASSIFICATION; WOOD; IDENTIFICATION; DESCRIPTORS; ENSEMBLE;
D O I
10.1007/s00138-015-0659-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiple classifiers on the dissimilarity space are proposed to address the problem of forest species recognition from microscopic images. To that end, classical texture-based features such as Gabor filters, local binary patterns (LBP) and local phase quantization (LPQ), as well as two keypoint-based features, the scale-invariant feature transform (SIFT) and the speeded up robust features (SURF), are used to generate a pool of diverse classifiers on the dissimilarity space. A comprehensive set of experiments on a database composed of 2,240 microscopic images from 112 different forest species was used to evaluate the performance of each individual classifier of the generated pool, the combination of all classifiers, and different dynamic selection of classifiers (DSC) methods. The best result (93.03 %) was observed by incorporating probabilistic information in a DSC method based on multiple classifier behavior.
引用
收藏
页码:279 / 293
页数:15
相关论文
共 46 条
  • [1] [Anonymous], 2008, Digital Image Processing
  • [2] [Anonymous], 2012, INT JOINT C NEUR NET
  • [3] [Anonymous], 2013, P 4 NAT C COMP VIS P, DOI DOI 10.1109/NCVPRIPG.2013.6776231
  • [4] Speeded-Up Robust Features (SURF)
    Bay, Herbert
    Ess, Andreas
    Tuytelaars, Tinne
    Van Gool, Luc
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 110 (03) : 346 - 359
  • [5] Texture-based descriptors for writer identification and verification
    Bertolini, D.
    Oliveira, L. S.
    Justino, E.
    Sabourin, R.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (06) : 2069 - 2080
  • [6] Reducing forgeries in writer-independent off-line signature verification through ensemble of classifiers
    Bertolini, D.
    Oliveira, L. S.
    Justino, E.
    Sabourin, R.
    [J]. PATTERN RECOGNITION, 2010, 43 (01) : 387 - 396
  • [7] A sequential machine vision procedure for assessing paper impurities
    Bianconi, Francesco
    Ceccarelli, Luca
    Fernandez, Antonio
    Saetta, Stefano A.
    [J]. COMPUTERS IN INDUSTRY, 2014, 65 (02) : 325 - 332
  • [8] Breiman L., 2001, J. Clin. Microbiol, V45, P5
  • [9] Dynamic selection of classifiers-A comprehensive review
    Britto, Alceu S., Jr.
    Sabourin, Robert
    Oliveira, Luiz E. S.
    [J]. PATTERN RECOGNITION, 2014, 47 (11) : 3665 - 3680
  • [10] Cavalin P.R., 2013, P 28 ANN ACM S APPL, P16