Existence and convergence of solutions for nonlinear biharmonic equations on graphs

被引:56
作者
Han, Xiaoli [1 ]
Shao, Mengqiu [1 ]
Zhao, Liang [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst MOE, Beijing 100875, Peoples R China
关键词
Sobolev space; Biharmonic equation; Locally finite graph; Ground state; LINEAR ELLIPTIC-EQUATIONS; GROUND-STATE SOLUTIONS; POSITIVE SOLUTIONS; SCHRODINGER-EQUATIONS; HEAT-EQUATION; BEHAVIOR;
D O I
10.1016/j.jde.2019.10.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first prove some propositions of Sobolev spaces defined on a locally finite graph G = (V, E), which are fundamental when dealing with equations on graphs under the variational framework. Then we consider a nonlinear biharmonic equation Lambda(2)u - Lambda u + (lambda a + 1)u = vertical bar u vertical bar(p-2)u on G = (V, E). Under some suitable assumptions, we prove that for any lambda > 1 and p > 2, the equation admits a ground state solution u(lambda). Moreover, we prove that as lambda -> +infinity, the solutions u(lambda) converge to a solution of the equation {Delta(2)u - Delta u + u = vertical bar u vertical bar(p-2)u, in Omega, u=0, on partial derivative Omega, where Omega ={x is an element of V: a(x) = 0} is the potential well and partial derivative Omega denotes theboundary of Omega. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:3936 / 3961
页数:26
相关论文
共 35 条
[1]  
Abrahams ID, 2002, FLUID MEC A, V68, P303
[2]  
Alves CO, 2002, COMMUN PURE APPL ANA, V1, P417
[3]  
[Anonymous], 2015, Online social networks: Human cognitive constraints in facebook and twitter personal graphs
[4]   Multiple positive solutions for a nonlinear Schrodinger equation [J].
Bartsch, T ;
Wang, ZQ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (03) :366-384
[5]  
Bose N.K., 1996, Neural Network Fundamentals with Graphs, Algorithms, and Applications
[6]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[7]   NONTRIVIAL SOLUTION OF SEMILINEAR ELLIPTIC EQUATION WITH CRITICAL EXPONENT IN R2 [J].
CAO, DM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (3-4) :407-435
[8]   A discrete Schrodinger equation via optimal transport on graphs [J].
Chow, Shui-Nee ;
Li, Wuchen ;
Zhou, Haomin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (08) :2440-2469
[9]   ENTROPY DISSIPATION OF FOKKER-PLANCK EQUATIONS ON GRAPHS [J].
Chow, Shui-Nee ;
Li, Wuchen ;
Zhou, Haomin .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (10) :4929-4950
[10]   KAZDAN-WARNER EQUATION ON INFINITE GRAPHS [J].
Ge, Huabin ;
Jiang, Wenfeng .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (05) :1091-1101