Circuit complexity in interacting QFTs and RG flows

被引:132
作者
Bhattacharyya, Arpan [1 ]
Shekar, Arvind [2 ]
Sinha, Aninda [2 ]
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys YITP, Ctr Gravitat Phys, Sakyo Ku, Kitashirakawa Oiwakecho, Kyoto 6068502, Japan
[2] Indian Inst Sci, Ctr High Energy Phys, CV Raman Ave, Bangalore 560012, Karnataka, India
关键词
Effective Field Theories; Lattice Quantum Field Theory; Renormalization Group; AdS-CFT Correspondence; QUANTUM COMPUTATION;
D O I
10.1007/JHEP10(2018)140
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider circuit complexity in certain interacting scalar quantum field theories, mainly focusing on the phi(4) theory. We work out the circuit complexity for evolving from a nearly Gaussian unentangled reference state to the entangled ground state of the theory. Our approach uses Nielsen's geometric method, which translates into working out the geodesic equation arising from a certain cost functional. We present a general method, making use of integral transforms, to do the required lattice sums analytically and give explicit expressions for the d = 2, 3 cases. Our method enables a study of circuit complexity in the epsilon expansion for the Wilson-Fisher fixed point. We find that with increasing dimensionality the circuit depth increases in the presence of the phi(4) interaction eventually causing the perturbative calculation to breakdown. We discuss how circuit complexity relates with the renormalization group.
引用
收藏
页数:44
相关论文
共 94 条
[1]  
Aaronson S, ARXIV160705256
[2]   Holographic subregion complexity from kinematic space [J].
Abt, Raimond ;
Erdmenger, Johanna ;
Gerbershagen, Marius ;
Melby-Thompson, Charles M. ;
Northe, Christian .
JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (01)
[3]   Topological Complexity in AdS3/CFT2 [J].
Abt, Raimond ;
Erdmenger, Johanna ;
Hinrichsen, Haye ;
Melby-Thompson, Charles M. ;
Meyer, Rene ;
Northe, Christian ;
Reyes, Ignacio A. .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2018, 66 (06)
[4]  
Ali T., POSTQUENCH EVOLUTION
[5]  
Ali T., ARXIV181002734
[6]   Holographic fidelity susceptibility [J].
Alishahiha, Mohsen ;
Astaneh, Amin Faraji .
PHYSICAL REVIEW D, 2017, 96 (08)
[7]   Holographic complexity [J].
Alishahiha, Mohsen .
PHYSICAL REVIEW D, 2015, 92 (12)
[8]   Evolution of complexity following a quantum quench in free field theory [J].
Alves, Daniel W. F. ;
Camilo, Giancarlo .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (06)
[9]   Effect of the dilaton on holographic complexity growth [J].
An, Yu-Sen ;
Peng, Rong-Hui .
PHYSICAL REVIEW D, 2018, 97 (06)
[10]  
[Anonymous], ARXIV11124833