A DIRECTION PRESERVING DISCRETIZATION FOR COMPUTING PHASE-SPACE DENSITIES

被引:4
作者
Chappell, David [1 ]
Crofts, Jonathan J. [1 ]
Richter, Martin [2 ]
Tanner, Gregor [2 ]
机构
[1] Nottingham Trent Univ, Sch Sci & Technol, Clifton Campus,Clifton Lane, Nottingham NG11 8NS, England
[2] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
high-frequency wave asymptotics; ray tracing; Frobenius-Perron operator; geometrical optics; Petrov-Galerkin method; ENERGY ANALYSIS; APPROXIMATION; MODEL; GENERATOR; RAY;
D O I
10.1137/20M1352041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Ray flow methods are an efficient tool to estimate vibro-acoustic or electromagnetic energy transport in complex domains at high-frequencies. Here, a Petrov-Galerkin discretization of a phase-space boundary integral equation for transporting wave energy densities on two-dimensional surfaces is proposed. The directional dependence of the energy density is approximated at each point on the boundary in terms of a finite local set of directions propagating into the domain. The direction of propagation can be preserved for transport across multicomponent domains when the directions within the local set are inherited from a global direction set. The range of applicability and computational cost of the method will be explored through a series of numerical experiments, including wave problems from both acoustics and elasticity in both single and multicomponent domains. The domain geometries considered range from both regular and irregular polygons to curved surfaces, including a cast aluminium shock tower from a Range Rover car.
引用
收藏
页码:B884 / B906
页数:23
相关论文
共 37 条
[1]   Improved Approximation of Phase-Space Densities on Triangulated Domains Using Discrete Flow Mapping with p-Refinement [J].
Bajars, Janis ;
Chappell, David J. ;
Hartmann, Timo ;
Tanner, Gregor .
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (03) :1290-1312
[2]   Applied Koopmanism [J].
Budisic, Marko ;
Mohr, Ryan ;
Mezic, Igor .
CHAOS, 2012, 22 (04)
[3]  
Cerven V., 2001, SEISMIC RAY THEORY
[4]   Discrete flow mapping: transport of phase space densities on triangulated surfaces [J].
Chappell, David J. ;
Tanner, Gregor ;
Loechel, Dominik ;
Sondergaard, Niels .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2155)
[5]   The image source method for calculating the vibrations of simply supported convex polygonal plates [J].
Cuenca, J. ;
Gautier, F. ;
Simon, L. .
JOURNAL OF SOUND AND VIBRATION, 2009, 322 (4-5) :1048-1069
[6]   Hypersonic State Estimation Using the Frobenius-Perron Operator [J].
Dutta, Parikshit ;
Bhattacharya, Raktim .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2011, 34 (02) :325-344
[7]  
Engquist B., 2003, Acta Numerica, V12, P181, DOI 10.1017/S0962492902000119
[8]   MEAN FIELD APPROXIMATION IN CONFORMATION DYNAMICS [J].
Friesecke, Gero ;
Junge, Oliver ;
Koltai, Peter .
MULTISCALE MODELING & SIMULATION, 2009, 8 (01) :254-268
[9]   ESTIMATING LONG-TERM BEHAVIOR OF FLOWS WITHOUT TRAJECTORY INTEGRATION: THE INFINITESIMAL GENERATOR APPROACH [J].
Froyland, Gary ;
Junge, Oliver ;
Koltai, Peter .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) :223-247
[10]  
Gatzke Timothy D, 2006, Int J Shape Model, V12, P1, DOI DOI 10.1142/S0218654306000810