On vertex-transitive non-Cayley graphs of square-free order

被引:17
作者
Li, CH [1 ]
Seress, A
机构
[1] Univ Western Australia, Dept Math & Stat, Nedlands, WA 6009, Australia
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
Cayley graph; non-Cayley number; primitive group;
D O I
10.1007/s10623-004-4859-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A complete classification is given of finite primitive permutation groups which contain a regular subgroup of square-free order. Then a collection PNC of square-free numbers n is obtained such that there exists a vertex-primitive non-Cayley graph on n vertices if and only if n is a member of PNC.
引用
收藏
页码:265 / 281
页数:17
相关论文
共 29 条
[1]   A CONSTRUCTION FOR VERTEX-TRANSITIVE GRAPHS [J].
ALSPACH, B ;
PARSONS, TD .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (02) :307-318
[2]  
ALSPACH B, 1979, ANN NY ACAD SCI, V319, P18
[3]  
Biggs N., 1993, ALGEBRAIC GRAPH THEO
[4]   UNIPOTENT ELEMENTS AND PARABOLIC SUBGROUPS OF REDUCTIVE GROUPS .1. [J].
BOREL, A ;
TITS, J .
INVENTIONES MATHEMATICAE, 1971, 12 (02) :95-&
[5]  
Dixon JD., 1996, PERMUTATION GROUPS
[6]   Vertex-primitive groups and graphs of order twice the product of two distinct odd primes [J].
Gamble, G ;
Praeger, CE .
JOURNAL OF GROUP THEORY, 2000, 3 (03) :247-269
[7]  
*GAP GROUP, 2000, GAP GROUPS ALG PROGR
[8]  
Hassani A., 1998, J COMBIN MATH COMBIN, V28, P187
[9]  
Huppert B., 1994, H WIELANDT MATH WORK, V1, P3
[10]  
HUPPERT B, 1982, FINITE GROUPS, pR3