Genetic background influences mitochondrial function: modeling mitochondrial disease for therapeutic development

被引:28
作者
Benit, Paule [1 ,2 ]
El-Khoury, Riyad [1 ,2 ]
Schiff, Manuel [1 ,2 ]
Sainsard-Chanet, Annie [3 ,4 ]
Rustin, Pierre [1 ,2 ]
机构
[1] INSERM, U676, F-75019 Paris, France
[2] Univ Paris 07, Fac Med Denis Diderot, IFR02, Paris, France
[3] CNRS, Ctr Genet Mol, F-91198 Gif Sur Yvette, France
[4] Univ Paris Sud, F-91405 Orsay, France
关键词
ADENINE-NUCLEOTIDE TRANSLOCATOR; NUCLEAR MODIFIER GENE; OXIDATIVE-PHOSPHORYLATION; FRIEDREICHS-ATAXIA; KNOCKOUT MICE; STRESS; MUTATIONS; PHENOTYPE; VARIABILITY; IDEBENONE;
D O I
10.1016/j.molmed.2010.03.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genetic background strongly influences the phenotype of human mitochondria! diseases. Mitochondrial biogenesis and function require up to 1500 nuclear genes, providing myriad opportunities for effects on disease expression. Phenotypic variability, combined with relative rarity, constitutes a major obstacle to establish cohorts for clinical trials. Animal models are, therefore, potentially valuable. However, several of these show no or very mild disease phenotypes compared with patients and can not be used for therapeutic studies. One reason might be the insufficient attention paid to the need for genetic diversity in order to capture the effects of genetic background on disease expression. Here, we use data from various models to emphasize the need to preserve genetic diversity when studying mitochondrial disease phenotypes or drug effects.
引用
收藏
页码:210 / 217
页数:8
相关论文
共 59 条
  • [1] Altered performance characteristics in cognitive tasks: comparison of the albino ICR and CD1 mouse strains
    Adams, B
    Fitch, T
    Chaney, S
    Gerlai, R
    [J]. BEHAVIOURAL BRAIN RESEARCH, 2002, 133 (02) : 351 - 361
  • [2] AHOLAERKKILA S, HUM MOL GEN IN PRESS
  • [3] GAA repeat expansion mutation mouse models of Friedreich ataxia exhibit oxidative stress leading to progressive neuronal and cardiac pathology
    Al-Mahdawi, Sahar
    Pinto, Ricardo Mouro
    Varshney, Dhaval
    Lawrence, Lorraine
    Lowrie, Margaret B.
    Hughes, Sian
    Webster, Zoe
    Blake, Julian
    Cooper, J. Mark
    King, Rosalind
    Pook, Mark A.
    [J]. GENOMICS, 2006, 88 (05) : 580 - 590
  • [4] Yeast models of human mitochondrial diseases
    Barrientos, A
    [J]. IUBMB LIFE, 2003, 55 (02) : 83 - 95
  • [5] Sdhd and Sdhd/H19 Knockout Mice Do Not Develop Paraganglioma or Pheochromocytoma
    Bayley, Jean-Pierre
    van Minderhout, Ivonne
    Hogendoorn, Pancras C. W.
    Cornelisse, Cees J.
    van der Wal, Annemieke
    Prins, Frans A.
    Teppema, Luc
    Dahan, Albert
    Devilee, Peter
    Taschner, Peter E. M.
    [J]. PLOS ONE, 2009, 4 (11):
  • [6] The Variability of the Harlequin Mouse Phenotype Resembles that of Human Mitochondrial-Complex I-Deficiency Syndromes
    Benit, Paule
    Goncalves, Sergio
    Dassa, Emmanuel Philippe
    Briere, Jean-Jacques
    Rustin, Pierre
    [J]. PLOS ONE, 2008, 3 (09):
  • [7] Diabetes and nutrition: The mitochondrial part
    Berdanier, CD
    [J]. JOURNAL OF NUTRITION, 2001, 131 (02) : 344S - 353S
  • [8] Sallp, a calcium-dependent cartier protein that suppresses an essential cellular function associated with the Aac2 isoform of ADP/ATP translocase in Saccharomyces cerevisiae
    Chen, XJ
    [J]. GENETICS, 2004, 167 (02) : 607 - 617
  • [9] Induction of an unregulated channel by mutations in adenine nucleotide translocase suggests an explanation for human ophthalmoplegia
    Chen, XJ
    [J]. HUMAN MOLECULAR GENETICS, 2002, 11 (16) : 1835 - 1843
  • [10] Variation in mitochondrial genotype has substantial lifespan effects which may be modulated by nuclear background
    Clancy, David J.
    [J]. AGING CELL, 2008, 7 (06) : 795 - 804