DNA G-quadruplex structures mold the DNA methylome

被引:175
|
作者
Mao, Shi-Qing [1 ]
Ghanbarian, Avazeh T. [1 ,4 ]
Spiegel, Jochen [1 ]
Cuesta, Sergio Martinez [1 ,2 ]
Beraldi, Dario [1 ,5 ]
Di Antonio, Marco [2 ]
Marsico, Giovanni [1 ]
Hansel-Hertsch, Robert [1 ]
Tannahill, David [1 ]
Balasubramanian, Shankar [1 ,2 ,3 ]
机构
[1] Canc Res UK Cambridge Inst, Li Ka Shing Ctr, Cambridge, England
[2] Univ Cambridge, Dept Chem, Cambridge, England
[3] Univ Cambridge, Sch Clin Med, Cambridge, England
[4] European Bioinformat Inst EMBL EBI, Wellcome Trust Genome Campus, Hinxton, England
[5] Univ Glasgow, Inst Canc Sci, Glasgow, Lanark, Scotland
基金
英国惠康基金; 欧盟地平线“2020”;
关键词
DE-NOVO METHYLATION; CPG ISLANDS; BINDING; ELEMENTS; DNMT3A; ROLES; RNA;
D O I
10.1038/s41594-018-0131-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Control of DNA methylation level is critical for gene regulation, and the factors that govern hypomethylation at CpG islands (CGIs) are still being uncovered. Here, we provide evidence that G-quadruplex (G4) DNA secondary structures are genomic features that influence methylation at CGIs. We show that the presence of G4 structure is tightly associated with CGI hypomethylation in the human genome. Surprisingly, we find that these G4 sites are enriched for DNA methyltransferase 1 (DNMT1) occupancy, which is consistent with our biophysical observations that DNMT1 exhibits higher binding affinity for G4s as compared to duplex, hemi-methylated, or single-stranded DNA. The biochemical assays also show that the G4 structure itself, rather than sequence, inhibits DNMT1 enzymatic activity. Based on these data, we propose that G4 formation sequesters DNMT1 thereby protecting certain CGIs from methylation and inhibiting local methylation.
引用
收藏
页码:951 / +
页数:9
相关论文
共 50 条
  • [31] Manipulating DNA G-Quadruplex Structures by Using Guanosine Analogues
    Haase, Linn
    Karg, Beatrice
    Weisz, Klaus
    CHEMBIOCHEM, 2019, 20 (08) : 985 - 993
  • [32] Quantitative visualization of DNA G-quadruplex structures in human cells
    Biffi, Giulia
    Tannahill, David
    McCafferty, John
    Balasubramanian, Shankar
    NATURE CHEMISTRY, 2013, 5 (03) : 182 - 186
  • [33] G-quadruplex DNA for construction of biosensors
    Yang, Hualin
    Zhou, Yu
    Liu, Juewen
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2020, 132
  • [34] G-quadruplex DNA: A Longer Story
    Monsen, Robert C.
    Trent, John O.
    Chaires, Jonathan B.
    ACCOUNTS OF CHEMICAL RESEARCH, 2022, : 3242 - 3252
  • [35] G-quadruplex DNA: myth or reality?
    Riou, JF
    Gomez, D
    Lemarteleur, T
    Trentesaux, C
    BULLETIN DU CANCER, 2003, 90 (04) : 305 - 313
  • [36] Responsive DNA G-quadruplex micelles
    Cozzoli, Liliana
    Gjonaj, Lorina
    Stuart, Marc C. A.
    Poolman, Bert
    Roelfes, Gerard
    CHEMICAL COMMUNICATIONS, 2018, 54 (03) : 260 - 263
  • [37] Simultaneous G-Quadruplex DNA Logic
    Bader, Antoine
    Cockroft, Scott L.
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (19) : 4820 - 4824
  • [38] Existence of G-quadruplex structures in promoter region of oncogenes confirmed by G-quadruplex DNA cross-linking strategy
    Libo Yuan
    Tian Tian
    Yuqi Chen
    Shengyong Yan
    Xiwen Xing
    Zhengan Zhang
    Qianqian Zhai
    Liang Xu
    Shaoru Wang
    Xiaocheng Weng
    Bifeng Yuan
    Yuqi Feng
    Xiang Zhou
    Scientific Reports, 3
  • [39] Existence of G-quadruplex structures in promoter region of oncogenes confirmed by G-quadruplex DNA cross-linking strategy
    Yuan, Libo
    Tian, Tian
    Chen, Yuqi
    Yan, Shengyong
    Xing, Xiwen
    Zhang, Zhengan
    Zhai, Qianqian
    Xu, Liang
    Wang, Shaoru
    Weng, Xiaocheng
    Yuan, Bifeng
    Feng, Yuqi
    Zhou, Xiang
    SCIENTIFIC REPORTS, 2013, 3
  • [40] Mms1 is an assistant for regulating G-quadruplex DNA structures
    Schwindt, Eike
    Paeschke, Katrin
    CURRENT GENETICS, 2018, 64 (03) : 535 - 540