Approximate conservation laws of nonlinear perturbed heat and wave equations

被引:5
作者
Bokhari, Ashfaque H. [1 ]
Johnpillai, A. G.
Mahomed, F. M. [2 ,3 ]
Zaman, F. D. [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[2] Univ Witwatersrand, Sch Computat & Appl Math, ZA-2050 Johannesburg, South Africa
[3] Univ Witwatersrand, Ctr Differential Equat Continuum Mech & Applicat, ZA-2050 Johannesburg, South Africa
关键词
Partial Lagrangian; Approximate partial Noether operators; Partial Noether theorem; Approximate conservation laws; SYMMETRIES; PDES; LAGRANGIANS;
D O I
10.1016/j.nonrwa.2012.04.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct approximate conservation laws for non-variational nonlinear perturbed (1 + 1) heat and wave equations by utilizing the partial Lagrangian approach. These perturbed nonlinear heat and wave equations arise in a number of important applications which are reviewed. Approximate symmetries of these have been obtained in the literature. Approximate partial Noether operators associated with a partial Lagrangian of the underlying perturbed heat and wave equations are derived herein. These approximate partial Noether operators are then used via the approximate version of the partial Noether theorem in the construction of approximate conservation laws of the underlying perturbed heat and wave equations. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2823 / 2829
页数:7
相关论文
共 17 条
  • [1] On approximate Lagrangians and invariants for scaling reductions of a non-linear wave equation with damping
    Ahmad, Ferhana
    Kara, A. H.
    Bokhari, A. H.
    Zaman, F. D.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 206 (01) : 16 - 20
  • [2] A DAMPED HYPERBOLIC EQUATION WITH CRITICAL EXPONENT
    ARRIETA, J
    CARVALHO, AN
    HALE, JK
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (5-6) : 841 - 866
  • [3] Baikov V., 1996, CRC HDB LIE GROUP AN, V3
  • [4] Carslaw H.S., 1986, Conduction of Heat In Solids, V2nde
  • [5] CATTANEO C, 1958, CR HEBD ACAD SCI, V247, P431
  • [6] SECOND SOUND IN SOLIDS
    CHESTER, M
    [J]. PHYSICAL REVIEW, 1963, 131 (05): : 2013 - &
  • [7] Approximate symmetries and solutions of the hyperbolic heat equation
    Diatta, B.
    Soh, C. Wafo
    Khalique, C. M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (01) : 263 - 272
  • [8] Lie-Backlund and Noether symmetries with applications
    Ibragimov, NH
    Kara, AH
    Mahomed, FM
    [J]. NONLINEAR DYNAMICS, 1998, 15 (02) : 115 - 136
  • [9] Approximate Noether-type symmetries and conservation laws via partial Lagrangians for PDEs with a small parameter
    Johnpillai, A. G.
    Kara, A. H.
    Mahomed, F. M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (01) : 508 - 518
  • [10] A basis of approximate conservation laws for PDEs with a small parameter
    Johnpillai, A. G.
    Kara, A. H.
    Mahomed, F. M.
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2006, 41 (6-7) : 830 - 837