High Throughput Yeast Strain Phenotyping with Droplet-Based RNA Sequencing

被引:0
作者
Zhang, Jesse Q. [1 ,2 ]
Chang, Kai-Chun [1 ]
Liu, Leqian [1 ]
Gartner, Zev J. [3 ,5 ]
Abate, Adam R. [1 ,4 ,5 ]
机构
[1] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Univ Calif Berkeley UCSF Grad Program Bioengn, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA
[4] Univ Calif San Francisco, Calif Inst Quantitat Biosci, San Francisco, CA 94143 USA
[5] Chan Zuckerberg Biohub, San Francisco, CA USA
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2020年 / 159期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Bioengineering; Issue; 159; microbial engineering; yeast strains; single cell RNA sequencing; droplet microfluidics; high-throughput sequencing; hydrogel droplets; MICROFLUIDICS; CELLS; MODEL;
D O I
10.3791/61014
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The powerful tools available to edit yeast genomes have made this microbe a valuable platform for engineering. While it is now possible to construct libraries of millions of genetically distinct strains, screening for a desired phenotype remains a significant obstacle. With existing screening techniques, there is a tradeoff between information output and throughput, with high-throughput screening typically being performed on one product of interest. Therefore, we present an approach to accelerate strain screening by adapting single cell RNA sequencing to isogenic picoliter colonies of genetically engineered yeast strains. To address the unique challenges of performing RNA sequencing on yeast cells, we culture isogenic yeast colonies within hydrogels and spheroplast prior to performing RNA sequencing. The RNA sequencing data can be used to infer yeast phenotypes and sort out engineered pathways. The scalability of our method addresses a critical obstruction in microbial engineering.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] High-throughput sequencing methods to study neuronal RNA-protein interactions
    Ule, Jernej
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2009, 37 : 1278 - 1280
  • [42] Evolution of blue-flowered species of genus Linum based on high-throughput sequencing of ribosomal RNA genes
    Bolsheva, Nadezhda L.
    Melnikova, Nataliya V.
    Kirov, Ilya V.
    Speranskaya, Anna S.
    Krinitsina, Anastasia A.
    Dmitriev, Alexey A.
    Belenikin, Maxim S.
    Krasnov, George S.
    Lakunina, Valentina A.
    Snezhkina, Anastasiya V.
    Rozhmina, Tatiana A.
    Samatadze, Tatiana E.
    Yurkevich, Olga Yu.
    Zoshchuk, Svyatoslav A.
    Amosova, Alexandra V.
    Kudryavtseva, Anna V.
    Muravenko, Olga V.
    BMC EVOLUTIONARY BIOLOGY, 2017, 17
  • [43] Evolution of blue-flowered species of genus Linum based on high-throughput sequencing of ribosomal RNA genes
    Nadezhda L. Bolsheva
    Nataliya V. Melnikova
    Ilya V. Kirov
    Anna S. Speranskaya
    Anastasia A. Krinitsina
    Alexey A. Dmitriev
    Maxim S. Belenikin
    George S. Krasnov
    Valentina A. Lakunina
    Anastasiya V. Snezhkina
    Tatiana A. Rozhmina
    Tatiana E. Samatadze
    Olga Yu. Yurkevich
    Svyatoslav A. Zoshchuk
    Аlexandra V. Amosova
    Anna V. Kudryavtseva
    Olga V. Muravenko
    BMC Evolutionary Biology, 17
  • [44] Profiling and bioinformatics analyses reveal differential expression of circular RNA in tongue cancer revealed by high-throughput sequencing
    Qiu, Xiaoxia
    Ke, Xu
    Ma, Huaci
    Han, Liang
    Chen, Qingwen
    Zhang, Shu
    Da, Peng
    Wu, Hao
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2019, 120 (03) : 4102 - 4112
  • [45] Hydrop enables droplet-based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads
    De Rop, Florian, V
    Ismail, Joy N.
    Bravo Gonzalez-Blas, Carmen
    Hulselmans, Gert J.
    Flerin, Christopher Campbell
    Janssens, Jasper
    Theunis, Koen
    Christiaens, Valerie M.
    Wouters, Jasper
    Marcassa, Gabriele
    de Wit, Joris
    Poovathingal, Suresh
    Aerts, Stein
    ELIFE, 2022, 11
  • [46] A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis
    Dillies, Marie-Agnes
    Rau, Andrea
    Aubert, Julie
    Hennequet-Antier, Christelle
    Jeanmougin, Marine
    Servant, Nicolas
    Keime, Celine
    Marot, Guillemette
    Castel, David
    Estelle, Jordi
    Guernec, Gregory
    Jagla, Bernd
    Jouneau, Luc
    Laloe, Denis
    Le Gall, Caroline
    Schaeffer, Brigitte
    Le Crom, Stephane
    Guedj, Mickael
    Jaffrezic, Florence
    BRIEFINGS IN BIOINFORMATICS, 2013, 14 (06) : 671 - 683
  • [47] Circular RNA expression profile in peripheral whole blood of lung adenocarcinoma by high Throughput sequencing
    Mu, Yinyu
    Xie, Fuyi
    Huang, YunFei
    Yang, Dongdong
    Xu, Guodong
    Wang, Chunnian
    Wu, Qiaoping
    MEDICINE, 2019, 98 (42) : e17601
  • [48] Streamlining RNA Aptamer Selection via Unique Molecular Identifiers and High-Throughput Sequencing
    Zhang, Dengwei
    Liu, Yuqing
    Huang, Huidong
    Fu, Ting
    Bing, Tao
    Wu, Xiaoqiu
    Tan, Weihong
    ANALYTICAL CHEMISTRY, 2024, 96 (42) : 16686 - 16694
  • [49] FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing
    Underwood, Jason G.
    Uzilov, Andrew V.
    Katzman, Sol
    Onodera, Courtney S.
    Mainzer, Jacob E.
    Mathews, David H.
    Lowe, Todd M.
    Salama, Sofie R.
    Haussler, David
    NATURE METHODS, 2010, 7 (12) : 995 - U81
  • [50] High-throughput sequencing for 1-methyladenosine (m1A) mapping in RNA
    Tserovski, Lyudmil
    Marchand, Virginie
    Hauenschild, Ralf
    Blanloeil-Oillo, Florence
    Helm, Mark
    Motorin, Yuri
    METHODS, 2016, 107 : 110 - 121