The Classification of Well-Posed Kinetic Boundary Layer for Hard Sphere Gas Mixtures

被引:9
作者
Bardos, Claude [2 ,3 ]
Yang, Xiongfeng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] Univ Paris 07, Paris, France
[3] LAN Univ Pierre & Marie Curie, Paris, France
基金
中国国家自然科学基金;
关键词
Boltzmann equation; Dilute gas dynamic; Gas mixtures; Knudsen layer; BOLTZMANN-EQUATION; LIMIT;
D O I
10.1080/03605302.2011.624149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The kinetic boundary layer for gas mixtures is described by a half space boundary value problem for the two-species steady Boltzmann equation with an incoming distribution. We consider it around a drifting normalized bi-Maxwellian and prove that the boundary layer problem is well-posed when the drifting velocity u exceeds the sound speed root 5/3, but one (respectively five, six) additional condition must be imposed when 0 < u < root 5/3 (respectively -root 5/3 < u <= 0 and u < -root 5/3).
引用
收藏
页码:1286 / 1314
页数:29
相关论文
共 20 条
[1]  
[Anonymous], 1994, Applied Mathematical Sciences
[2]   Knudsen layer for gas mixtures [J].
Aoki, K ;
Bardos, C ;
Takata, S .
JOURNAL OF STATISTICAL PHYSICS, 2003, 112 (3-4) :629-655
[3]   NUMERICAL-ANALYSIS OF STEADY FLOWS OF A GAS CONDENSING ON OR EVAPORATING FROM ITS PLANE CONDENSED PHASE ON THE BASIS OF KINETIC-THEORY - EFFECT OF GAS MOTION ALONG THE CONDENSED PHASE [J].
AOKI, K ;
NISHINO, K ;
SONE, Y ;
SUGIMOTO, H .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1991, 3 (09) :2260-2275
[4]   THE MILNE AND KRAMERS PROBLEMS FOR THE BOLTZMANN-EQUATION OF A HARD-SPHERE GAS [J].
BARDOS, C ;
CAFLISCH, RE ;
NICOLAENKO, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (03) :323-352
[5]   Half-space problems for the Boltzmann equation: A survey [J].
Bardos, Claude ;
Golse, Francois ;
Sone, Yoshio .
JOURNAL OF STATISTICAL PHYSICS, 2006, 124 (2-4) :275-300
[6]  
Cercignani C., 1998, Transport Theory and Statistical Physics, V27, P1, DOI 10.1080/00411459808205139
[7]  
Cercignani C., 1986, HALF SPACE PROBLEM K
[8]   EXISTENCE OF BOUNDARY LAYER SOLUTIONS TO THE BOLTZMANN EQUATION [J].
Chen, Chiun-Chuan ;
Liu, Tai-Ping ;
Yang, Tong .
ANALYSIS AND APPLICATIONS, 2004, 2 (04) :337-363
[9]   A CLASSIFICATION OF WELL-POSED KINETIC LAYER PROBLEMS [J].
CORON, F ;
GOLSE, F ;
SULEM, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (04) :409-435
[10]   STATIONARY SOLUTIONS OF THE LINEARIZED BOLTZMANN-EQUATION IN A HALF-SPACE [J].
GOLSE, F ;
POUPAUD, F .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1989, 11 (04) :483-502