Development of Ti-Zr-Hf-Y-La high-entropy alloys with dual hexagonal-close-packed structure

被引:32
|
作者
Nagase, Takeshi [1 ,2 ]
Todai, Mitsuharu [3 ]
Nakano, Takayoshi [2 ]
机构
[1] Osaka Univ, Res Ctr Ultrahigh Voltage Electron Microscopy, 7-1 Mihogaoka, Ibaraki, Osaka 5670047, Japan
[2] Osaka Univ, Grad Sch Engn, Div Mat & Mfg Sci, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
[3] Niihama Coll, Natl Inst Technol, Dept Environm Mat Engn, 7-1 Yagumo Cho, Niihama, Ehime 7928580, Japan
关键词
High entropy alloys; Metals and alloys; Microstructure; Solidification; Liquid phase separation; Biomaterials; LIQUID-PHASE SEPARATION; BULK METALLIC GLASSES; AMORPHOUS PHASE; IMMISCIBLE ALLOYS; CONSTITUENT ELEMENTS; CRYSTALLINE GLOBULES; MICROSTRUCTURE; CU; SOLIDIFICATION; DESIGN;
D O I
10.1016/j.scriptamat.2020.05.033
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
TiZrHfYLa0.2 high-entropy alloys (HEAs) with dual hexagonal-closed-packed (HCP) structures were designed based on the concept of liquid phase separation (LPS) and segregation for enhancing the immiscibility of the constituent elements. The LPS leads to a particular solidification microstructure on the free surface side and Cu-hearth contacted area in the ingots. The dual HCP structures with equi-axis Ti-Zr-Hf dendrite and Y-La-rich interdendrite were observed at most regions of the arc-melted ingots. The mixing enthalpy among the constituent elements and predicted phase diagrams constructed by the Materials Project were effective for the alloy design of the HEAs with dual HCP structures. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd.
引用
收藏
页码:242 / 246
页数:5
相关论文
共 50 条
  • [1] Entropy versus enthalpy in hexagonal-close-packed high-entropy alloys
    Xin-Wei Yang
    Xiao-Hui Shi
    Hui-Jun Yang
    Jun-Wei Qiao
    Peter K. Liaw
    Yu-Cheng Wu
    Rare Metals, 2022, 41 : 2906 - 2920
  • [2] Entropy versus enthalpy in hexagonal-close-packed high-entropy alloys
    Yang, Xin-Wei
    Shi, Xiao-Hui
    Yang, Hui-Jun
    Qiao, Jun-Wei
    Liaw, Peter K.
    Wu, Yu-Cheng
    RARE METALS, 2022, 41 (08) : 2906 - 2920
  • [3] High-Entropy Alloys in Hexagonal Close-Packed Structure
    M. C. Gao
    B. Zhang
    S. M. Guo
    J. W. Qiao
    J. A. Hawk
    Metallurgical and Materials Transactions A, 2016, 47 : 3322 - 3332
  • [4] High-Entropy Alloys in Hexagonal Close-Packed Structure
    Gao, M. C.
    Zhang, B.
    Guo, S. M.
    Qiao, J. W.
    Hawk, J. A.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2016, 47A (07): : 3322 - 3332
  • [5] Entropy versus enthalpy in hexagonal-close-packed highentropy alloys
    Xin-Wei Yang
    Xiao-Hui Shi
    Hui-Jun Yang
    Jun-Wei Qiao
    Peter K.Liaw
    Yu-Cheng Wu
    Rare Metals, 2022, 41 (08) : 2906 - 2920
  • [6] Deformation mechanisms in hexagonal close-packed high-entropy alloys
    Wang, Z.
    Bao, M. L.
    Wang, X. J.
    Liaw, P. K.
    Guo, R. P.
    Qiao, J. W.
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (17)
  • [7] Nonbasal Slip Systems Enable a Strong and Ductile Hexagonal-Close-Packed High-Entropy Phase
    Bu, Yeqiang
    Li, Ziming
    Liu, Jiabin
    Wang, Hongtao
    Raabe, Dierk
    Yang, Wei
    PHYSICAL REVIEW LETTERS, 2019, 122 (07)
  • [8] Nanoindentation Creep Behavior of Hexagonal Close-Packed High-Entropy Alloys
    Wang, Z.
    Yang, X. W.
    Zhang, Q.
    Qiao, J. W.
    METALS AND MATERIALS INTERNATIONAL, 2024, 30 (09) : 2433 - 2439
  • [9] Thermo-elastic behavior of hexagonal Sc-Ti-Zr-Hf high-entropy alloys
    Huang, Shuo
    Cheng, Jie
    Liu, Lei
    Li, Wei
    Jin, Hongyun
    Vitos, Levente
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (23)
  • [10] Hexagonal close-packed high-entropy alloy
    Canter, Neil
    TRIBOLOGY & LUBRICATION TECHNOLOGY, 2017, 73 (08) : 14 - 15