Adaptive BEM with optimal convergence rates for the Helmholtz equation

被引:13
作者
Bespalov, Alex [1 ]
Betcke, Timo [2 ]
Haberl, Alexander [3 ]
Praetorius, Dirk [3 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] UCL, Ctr Inverse Problems, Gower St, London WC1E 6BT, England
[3] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
英国工程与自然科学研究理事会; 奥地利科学基金会;
关键词
Boundary element method; Helmholtz equation; A posteriori error estimate; Adaptive algorithm; Convergence; Optimality; BOUNDARY-ELEMENT METHODS; POSTERIORI ERROR ESTIMATE; INTEGRAL-EQUATIONS; SCATTERING; EFFICIENCY; ALGORITHM; SURFACES; FEM;
D O I
10.1016/j.cma.2018.12.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze an adaptive boundary element method for the weakly-singular and hypersingular integral equations for the 2D and 3D Helmholtz problem. The proposed adaptive algorithm is steered by a residual error estimator and does not rely on any a priori information that the underlying meshes are sufficiently fine. We prove convergence of the error estimator with optimal algebraic rates, independently of the (coarse) initial mesh. As a technical contribution, we prove certain local inverse-type estimates for the boundary integral operators associated with the Helmholtz equation. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:260 / 287
页数:28
相关论文
共 46 条
[21]   Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations [J].
Feischl, Michael ;
Gantner, Gregor ;
Praetorius, Dirk .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 290 :362-386
[22]   Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation [J].
Feischl, Michael ;
Fuehrer, Thomas ;
Karkulik, Michael ;
Melenk, Jens Markus ;
Praetorius, Dirk .
CALCOLO, 2014, 51 (04) :531-562
[23]  
Fuhrer Thomas, 2018, NUMER MATH
[24]  
Gantner G, 2017, THESIS TU WIEN
[25]   Adaptive IGAFEM with optimal convergence rates: Hierarchical B-splines [J].
Gantner, Gregor ;
Haberlik, Daniel ;
Praetorius, Dirk .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (14) :2631-2674
[26]   Convergence Rates of Adaptive Methods, Besov Spaces, and Multilevel Approximation [J].
Gantumur, Tsogtgerel .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2017, 17 (04) :917-956
[27]   Adaptive boundary element methods with convergence rates [J].
Gantumur, Tsogtgerel .
NUMERISCHE MATHEMATIK, 2013, 124 (03) :471-516
[28]   Inverse-type estimates on hp-finite element spaces and applications [J].
Georgoulis, Emmanuil H. .
MATHEMATICS OF COMPUTATION, 2008, 77 (261) :201-219
[29]   Finite elements on degenerate meshes: inverse-type inequalities and applications [J].
Graham, IG ;
Hackbusch, W ;
Sauter, SA .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2005, 25 (02) :379-407
[30]   Anisotropic mesh refinement: The conditioning of Galerkin boundary element matrices and simple preconditioners [J].
Graham, Ivan G. ;
Mclean, William .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) :1487-1513