Adaptive BEM with optimal convergence rates for the Helmholtz equation

被引:13
作者
Bespalov, Alex [1 ]
Betcke, Timo [2 ]
Haberl, Alexander [3 ]
Praetorius, Dirk [3 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] UCL, Ctr Inverse Problems, Gower St, London WC1E 6BT, England
[3] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
英国工程与自然科学研究理事会; 奥地利科学基金会;
关键词
Boundary element method; Helmholtz equation; A posteriori error estimate; Adaptive algorithm; Convergence; Optimality; BOUNDARY-ELEMENT METHODS; POSTERIORI ERROR ESTIMATE; INTEGRAL-EQUATIONS; SCATTERING; EFFICIENCY; ALGORITHM; SURFACES; FEM;
D O I
10.1016/j.cma.2018.12.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze an adaptive boundary element method for the weakly-singular and hypersingular integral equations for the 2D and 3D Helmholtz problem. The proposed adaptive algorithm is steered by a residual error estimator and does not rely on any a priori information that the underlying meshes are sufficiently fine. We prove convergence of the error estimator with optimal algebraic rates, independently of the (coarse) initial mesh. As a technical contribution, we prove certain local inverse-type estimates for the boundary integral operators associated with the Helmholtz equation. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:260 / 287
页数:28
相关论文
共 46 条
[1]  
[Anonymous], INTEGRAL EQUATION ME
[2]   LOCAL INVERSE ESTIMATES FOR NON-LOCAL BOUNDARY INTEGRAL OPERATORS [J].
Aurada, M. ;
Feischl, M. ;
Fuhrer, T. ;
Karkulik, M. ;
Melenk, J. M. ;
Praetorius, D. .
MATHEMATICS OF COMPUTATION, 2017, 86 (308) :2651-2686
[3]   Efficiency and Optimality of Some Weighted-Residual Error Estimator for Adaptive 2D Boundary Element Methods [J].
Aurada, Markus ;
Feischl, Michael ;
Fuehrer, Thomas ;
Karkulik, Michael ;
Praetorius, Dirk .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2013, 13 (03) :305-332
[4]   Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems [J].
Bespalov, Alex ;
Haberl, Alexander ;
Praetorius, Dirk .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 317 :318-340
[5]   Adaptive finite element methods with convergence rates [J].
Binev, P ;
Dahmen, W ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :219-268
[6]  
Brenner S.C., 2008, TEXTS APPL MATH, V15
[7]  
CARSTENSEN C, 1995, MATH COMPUT, V64, P483, DOI 10.1090/S0025-5718-1995-1277764-7
[8]   Axioms of adaptivity [J].
Carstensen, C. ;
Feischl, M. ;
Page, M. ;
Praetorius, D. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (06) :1195-1253
[9]   Residual-based a posteriori error estimate for hypersingular equation on surfaces - Dedicated to W. L. Wendland on the occasion of his 65th birthday [J].
Carstensen, C ;
Maischak, M ;
Praetorius, D ;
Stephan, EP .
NUMERISCHE MATHEMATIK, 2004, 97 (03) :397-425
[10]   A posteriori error estimate and h-adaptive algorithm on surfaces for Symm's integral equation [J].
Carstensen, C ;
Maischak, M ;
Stephan, EP .
NUMERISCHE MATHEMATIK, 2001, 90 (02) :197-213