Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis

被引:31
作者
Alqahtani, Norah [1 ]
Porwal, Suheel K. [1 ]
James, Elle D. [2 ]
Bis, Dana M. [2 ]
Karty, Jonathan A. [3 ]
Lane, Amy L. [2 ]
Viswanathan, Rajesh [1 ]
机构
[1] Case Western Reserve Univ, Millis Sci Ctr, Dept Chem, Cleveland, OH 44106 USA
[2] Univ N Florida, Dept Chem, Jacksonville, FL 32224 USA
[3] Indiana Univ, Dept Chem, Mass Spectrometry Facil, Bloomington, IN 47405 USA
关键词
BIOSYNTHETIC GENE-CLUSTER; COPE REARRANGEMENT; STRUCTURAL BASIS; DIKETOPIPERAZINES; PYRROLOINDOLINES; IDENTIFICATION; FRAGMENTATION; NOCARDIOPSINS; POLYKETIDES; EXPRESSION;
D O I
10.1039/c5ob00537j
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
Marine actinomycete-derived natural products continue to inspire chemical and biological investigations. Nocardioazines A and B (3 and 4), from Nocardiopsis sp. CMB-M0232, are structurally unique alkaloids featuring a 2,5-diketopiperazine (DKP) core functionalized with indole C3-prenyl as well as indole C3- and N-methyl groups. The logic of their assembly remains cryptic. Bioinformatics analyses of the Nocardiopsis sp. CMB-M0232 draft genome afforded the noz cluster, split across two regions of the genome, and encoding putative open reading frames with roles in nocardioazine biosynthesis, including cyclodipeptide synthase (CDPS), prenyltransferase, methyltransferase, and cytochrome P450 homologs. Heterologous expression of a twelve gene contig from the noz cluster in Streptomyces coelicolor resulted in accumulation of cyclo-L-Trp-L-Trp DKP (5). This experimentally connected the noz cluster to indole alkaloid natural product biosynthesis. Results from bioinformatics analyses of the noz pathway along with challenges in actinomycete genetics prompted us to use asymmetric synthesis and mass spectrometry to determine biosynthetic intermediates in the noz pathway. The structures of hypothesized biosynthetic intermediates 5 and 12-17 were firmly established through chemical synthesis. LC-MS and MS-MS comparison of these synthetic compounds with metabolites present in chemical extracts from Nocardiopsis sp. CMB-M0232 revealed which of these hypothesized intermediates were relevant in the nocardioazine biosynthetic pathway. This established the early and mid-stages of the biosynthetic pathway, demonstrating that Nocardiopsis performs indole C3-methylation prior to indole C3-normal prenylation and indole N1'-methylation in nocardioazine B assembly. These results highlight the utility of merging bioinformatics analyses, asymmetric synthetic approaches, and mass spectrometric metabolite profiling in probing natural product biosynthesis.
引用
收藏
页码:7177 / 7192
页数:16
相关论文
共 36 条
  • [1] Predicted class-I aminoacyl tRNA synthetase-like proteins in non-ribosomal peptide synthesis
    Aravind, L.
    de Souza, Robson F.
    Iyer, Lakshminarayan M.
    [J]. BIOLOGY DIRECT, 2010, 5
  • [2] The nonribosomal synthesis of diketopiperazines in tRNA-dependent cyclodipeptide synthase pathways
    Belin, Pascal
    Moutiez, Mireille
    Lautru, Sylvie
    Seguin, Jerome
    Pernodet, Jean-Luc
    Gondry, Muriel
    [J]. NATURAL PRODUCT REPORTS, 2012, 29 (09) : 961 - 979
  • [3] Identification and structural basis of the reaction catalyzed by CYP121, an essential cytochrome P450 in Mycobacterium tuberculosis
    Belin, Pascal
    Le Du, Marie Helene
    Fielding, Alistair
    Lequin, Olivier
    Jacquet, Mickael
    Charbonnier, Jean-Baptiste
    Lecoq, Alain
    Thai, Robert
    Courcon, Marie
    Masson, Cedric
    Dugave, Christophe
    Genet, Roger
    Pernodet, Jean-Luc
    Gondry, Muriel
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (18) : 7426 - 7431
  • [4] Characterization of the Nocardiopsin Biosynthetic Gene Cluster Reveals Similarities to and Differences from the Rapamycin and FK-506 Pathways
    Bis, Dana M.
    Ban, Yang H.
    James, Elle D.
    Alqahtani, Norah
    Viswanathan, Rajesh
    Lane, Amy L.
    [J]. CHEMBIOCHEM, 2015, 16 (06) : 990 - 997
  • [5] Blunt JW, 2013, NAT PROD REP, V30, P237, DOI [10.1039/d0np00089b, 10.1039/c2np20112g]
  • [6] Structural basis for nonribosomal peptide synthesis by an aminoacyl-tRNA synthetase paralog
    Bonnefond, Luc
    Arai, Taiga
    Sakaguchi, Yuriko
    Suzuki, Tsutomu
    Ishitani, Ryuichiro
    Nureki, Osamu
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (10) : 3912 - 3917
  • [7] 2,5-Diketopiperazines: Synthesis, Reactions, Medicinal Chemistry, and Bioactive Natural Products
    Borthwick, Alan D.
    [J]. CHEMICAL REVIEWS, 2012, 112 (07) : 3641 - 3716
  • [8] MS/MS networking guided analysis of molecule and gene cluster families
    Don Duy Nguyen
    Wu, Cheng-Hsuan
    Moree, Wilna J.
    Lamsa, Anne
    Medema, Marnix H.
    Zhao, Xiling
    Gavilan, Ronnie G.
    Aparicio, Marystella
    Atencio, Librada
    Jackson, Chanaye
    Ballesteros, Javier
    Sanchez, Joel
    Watrous, Jeramie D.
    Phelan, Vanessa V.
    van de Wiel, Corine
    Kersten, Roland D.
    Mehnaz, Samina
    De Mot, Rene
    Shank, Elizabeth A.
    Charusanti, Pep
    Nagarajan, Harish
    Duggan, Brendan M.
    Moore, Bradley S.
    Bandeira, Nuno
    Palsson, Bernhard O.
    Pogliano, Kit
    Gutierrez, Marcelino
    Dorrestein, Pieter C.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (28) : E2611 - E2620
  • [9] Fragmentation of diketopiperazines from Aspergillus fumigatus by electrospray ionization tandem mass spectrometry (ESI-MS/MS)
    Furtado, Niege A. J. C.
    Vessecchi, Ricardo
    Tomaz, Jose Carlos
    Galembeck, Sergio E.
    Bastos, Jairo K.
    Lopes, Norberto P.
    Crotti, Antonio E. M.
    [J]. JOURNAL OF MASS SPECTROMETRY, 2007, 42 (10): : 1279 - 1286
  • [10] Insights into the Generation of Structural Diversity in a tRNA-Dependent Pathway for Highly Modified Bioactive Cyclic Dipeptides
    Giessen, Tobias W.
    von Tesmar, Alexander M.
    Marahiel, Mohamed A.
    [J]. CHEMISTRY & BIOLOGY, 2013, 20 (06): : 828 - 838