Double absorbing boundaries for finite-difference time-domain electromagnetics

被引:9
|
作者
LaGrone, John [1 ]
Hagstrom, Thomas [1 ]
机构
[1] Southern Methodist Univ, Dept Math, POB 750156, Dallas, TX 75275 USA
关键词
Radiation boundary conditions; Maxwell's equations; Wave equation; Yee scheme; PERFECTLY MATCHED LAYERS; EVANESCENT WAVES; MAXWELLS EQUATIONS; PML; ABSORPTION; MEDIA;
D O I
10.1016/j.jcp.2016.09.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We describe the implementation of optimal local radiation boundary condition sequences for second order finite difference approximations to Maxwell's equations and the scalar wave equation using the double absorbing boundary formulation. Numerical experiments are presented which demonstrate that the design accuracy of the boundary conditions is achieved and, for comparable effort, exceeds that of a convolution perfectly matched layer with reasonably chosen parameters. An advantage of the proposed approach is that parameters can be chosen using an accurate a priorierror bound. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:650 / 665
页数:16
相关论文
共 50 条
  • [41] An Evaluation of Finite-Difference and Finite-Integration Time-Domain Modelling Tools for Ground Penetrating Radar Antennas
    Warren, Craig
    Pajewski, Lara
    Ventura, Alessio
    Giannopoulos, Antonios
    2016 10TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2016,
  • [42] Efficient Implementation for 3-D Laguerre-Based Finite-Difference Time-Domain Method
    Duan, Yan-Tao
    Chen, Bin
    Fang, Da-Gang
    Zhou, Bi-Hua
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2011, 59 (01) : 56 - 64
  • [43] A Frequency-Dependent Weakly Conditionally Stable Finite-Difference Time-Domain Method for Dispersive Materials
    Chen, Juan
    Wang, Jianguo
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2010, 25 (08): : 665 - 671
  • [44] Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations
    Skolski, J. Z. P.
    Roemer, G. R. B. E.
    Obona, J. Vincenc
    't Veld, A. J. Huis In
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (10)
  • [45] Subpixel smoothing finite-difference time-domain method for material interface between dielectric and dispersive media
    Liu, Jinjie
    Brio, Moysey
    Moloney, Jerome V.
    OPTICS LETTERS, 2012, 37 (22) : 4802 - 4804
  • [46] Numerical solution of the time-domain Maxwell equations using high-accuracy finite-difference methods
    Jurgens, HM
    Zingg, DW
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (05) : 1675 - 1696
  • [47] Research on the moving plasma photonic crystals based on the novel symplectic finite-difference time-domain method
    Gao, Ying-Jie
    Ye, Quan-Yi
    Zhang, Jin
    OPTIK, 2020, 218
  • [48] The Optimal Force-Gradient Symplectic Finite-Difference Time-Domain Scheme for Electromagnetic Wave Propagation
    Zhong, Shuangying
    Ran, Chongxi
    Liu, Song
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2016, 64 (12) : 5450 - 5454
  • [49] Stability and dispersion analysis of the finite-difference time-domain algorithms in modelling the earth-ionosphere system
    Wang, Y.
    Xia, H.
    Cao, Q.
    IET MICROWAVES ANTENNAS & PROPAGATION, 2011, 5 (04) : 476 - 481
  • [50] An explicit fourth-order staggered finite-difference time-domain method for Maxwell's equations
    Xie, ZQ
    Chan, CH
    Zhang, B
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 147 (01) : 75 - 98