Retrieval of Hyperspectral Surface Reflectance Based on Machine Learning

被引:9
作者
Zhu, Sijie [1 ,2 ,3 ]
Lei, Bin [1 ,2 ,3 ]
Wu, Yirong [1 ,2 ,3 ]
机构
[1] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100039, Peoples R China
[2] Chinese Acad Sci, Inst Elect, Beijing 100190, Peoples R China
[3] Key Lab Technol Geospatial Informat Proc & Applic, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
machine learning; hyperspectral image processing; atmospheric correction; hypercolumn; ATMOSPHERIC CORRECTION; CLASSIFICATION;
D O I
10.3390/rs10020323
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Many methods based on radiative-transfer models and empirical approaches with prior knowledge have been developed for the retrieval of hyperspectral surface reflectance. In this paper, we propose a novel approach for atmospheric correction of hyperspectral images based on machine learning. A support vector machine (SVM) is used for learning to predict the surface reflectance from the preprocessed at-sensor radiance image. The preprocessed spectra of each pixel are considered as the spectral feature and hypercolumn based on convolutional neural networks (CNNs) is utilized for spatial feature extraction. After training, the surface reflectance of images from totally different spatial positions and atmospheric conditions can be quickly predicted with the at-sensor radiance image and the models trained before, and no additional metadata is required. On an AVIRIS hyperspectral data set, the performances of our method, based on spectral and spatial features, respectively, are compared. Furthermore, our method outperforms QUAC, and the retrieved spectra have good agreement with FLAASH and AVIRIS reflectance products.
引用
收藏
页数:15
相关论文
共 30 条
[1]   Atmospheric correction for short-wave spectral imagery based on MODTRAN4 [J].
Adler-Golden, SM ;
Matthew, MW ;
Bernstein, LS ;
Levine, RY ;
Berk, A ;
Richtsmeier, SC ;
Acharya, PK ;
Anderson, GP ;
Felde, G ;
Gardner, J ;
Hoke, M ;
Jeong, LS ;
Pukall, B ;
Ratkowski, A ;
Burke, HH .
IMAGING SPECTROMETRY V, 1999, 3753 :61-69
[2]   Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data [J].
Ali, Iftikhar ;
Greifeneder, Felix ;
Stamenkovic, Jelena ;
Neumann, Maxim ;
Notarnicola, Claudia .
REMOTE SENSING, 2015, 7 (12) :16398-16421
[3]   Quick atmospheric correction code: algorithm description and recent upgrades [J].
Bernstein, Lawrence S. ;
Jin, Xuemin ;
Gregor, Brian ;
Adler-Golden, Steven M. .
OPTICAL ENGINEERING, 2012, 51 (11)
[4]  
Bernstein LS, 2005, INT GEOSCI REMOTE SE, P3549
[5]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[6]   Target Classification Using the Deep Convolutional Networks for SAR Images [J].
Chen, Sizhe ;
Wang, Haipeng ;
Xu, Feng ;
Jin, Ya-Qiu .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08) :4806-4817
[7]  
Cooley T, 2002, INT GEOSCI REMOTE SE, P1414, DOI 10.1109/IGARSS.2002.1026134
[8]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[9]   DERIVATION OF SCALED SURFACE REFLECTANCES FROM AVIRIS DATA [J].
GAO, BC ;
HEIDEBRECHT, KB ;
GOETZ, AFH .
REMOTE SENSING OF ENVIRONMENT, 1993, 44 (2-3) :165-178
[10]   Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) [J].
Green, RO ;
Eastwood, ML ;
Sarture, CM ;
Chrien, TG ;
Aronsson, M ;
Chippendale, BJ ;
Faust, JA ;
Pavri, BE ;
Chovit, CJ ;
Solis, MS ;
Olah, MR ;
Williams, O .
REMOTE SENSING OF ENVIRONMENT, 1998, 65 (03) :227-248