MAXIMIZING SPECTRAL RADII OF UNIFORM HYPERGRAPHS WITH FEW EDGES

被引:50
作者
Fan, Yi-Zheng [1 ]
Tan, Ying-Ying [1 ,2 ]
Peng, Xi-Xi [1 ]
Liu, An-Hong [1 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
[2] Anhui Jianzhu Univ, Sch Math & Phys, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
tensor; spectral radius; unicyclic hypergraph; bicyclic hypergraph; girth; PERRON-FROBENIUS THEOREM; MAXIMAL GRAPHS;
D O I
10.7151/dmgt.1906
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the hypergraphs whose spectral radii attain the maximum among all uniform hypergraphs with given number of edges. In particular we characterize the hypergraph(s) with maximum spectral radius over all unicyclic hypergraphs, linear or power unicyclic hypergraphs with given girth, linear or power bicyclic hypergraphs, respectively.
引用
收藏
页码:845 / 856
页数:12
相关论文
共 19 条
[1]  
Berge C., 1976, GRAPHS HYPERGRAPHS
[2]  
Bretto A., 2013, Hypergraph Theory an Introduction, DOI DOI 10.1007/978-3-319-00080-0
[3]   ON THE SPECTRAL-RADIUS OF (0,1)-MATRICES [J].
BRUALDI, RA ;
HOFFMAN, AJ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1985, 65 (FEB) :133-146
[4]  
Brualdi RA., 1986, Publ. Inst. Math. (Beograd) (N.S.), V39, P45
[5]  
Chang KC, 2008, COMMUN MATH SCI, V6, P507
[6]   On eigenvalue problems of real symmetric tensors [J].
Chang, K. C. ;
Pearson, Kelly ;
Zhang, Tan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (01) :416-422
[7]  
Collatz L., 1957, Abh. Math. Semin. Univ. Hamburg, V21, P63, DOI DOI 10.1007/BF02941924
[8]   Spectra of uniform hypergraphs [J].
Cooper, Joshua ;
Dutle, Aaron .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) :3268-3292
[9]   Perron-Frobenius theorem for nonnegative multilinear forms and extensions [J].
Friedland, S. ;
Gaubert, S. ;
Han, L. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (02) :738-749
[10]  
Hong Y., 1986, J. East China Norm. Univ. Natur. Sci. Ed., V1, P31