CO2 capture into aqueous solutions of piperazine activated 2-amino-2-methyl-1-propanol

被引:122
作者
Bruder, Peter [1 ]
Grimstvedt, Andreas [2 ]
Mejdell, Thor [2 ]
Svendsen, Hallvard F. [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Chem Engn, NO-7491 Trondheim, Norway
[2] SINTEF Mat & Chem, NO-7465 Trondheim, Norway
关键词
Piperazine (PZ); 2-amino-2-methyl-1-propanol (AMP); Absorption; Thermodynamics process; Mathematical modeling; Phase equilibria; CARBON-DIOXIDE; METHYLDIETHANOLAMINE SOLUTIONS; LIQUID-EQUILIBRIUM; ABSORPTION; SOLUBILITY; MONOETHANOLAMINE; MIXTURES; KINETICS; DIETHANOLAMINE; SELECTION;
D O I
10.1016/j.ces.2011.08.051
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this work, experimental data and a simplified vapor-liquid equilibrium (VLE) model for the absorption of CO2 into aqueous solutions of piperazine (PZ) activated 2-amino-2-methyl-1-propanol (AMP) are reported. The purpose of the work was to find the AMP/PZ system with the highest concentration and cyclic capacity, which could be used in the industry without forming solid precipitations at operational temperatures. The effect of the AMP/PZ ratio and the total concentration level of amine was studied. The highest possible ratio of AMP/PZ, which does not form solid precipitates during the absorption of CO2 at 40 degrees C (40 wt% amine), was identified. Considering the maximum loading found in the screening tests for AMP/PZ (3+1.5 M) and for 30 wt% MEA systems, the AMP/PZ system has about 128% higher specific cyclic capacity if operating between 40 and 80 degrees C, and almost twice the CO2 partial pressure at 120 degrees C compared to MEA. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6193 / 6198
页数:6
相关论文
共 24 条
[1]   Enthalpy of solution of CO2 in aqueous solutions of 2-amino-2-methyl-1-propanol [J].
Arcis, Hugues ;
Rodier, Laurence ;
Coxam, Jean-Yves .
JOURNAL OF CHEMICAL THERMODYNAMICS, 2007, 39 (06) :878-887
[2]   Vapor-liquid equilibrium in aqueous amine amino acid salt solution: 3-(methylamino)propylamine/sarcosine [J].
Aronu, Ugochukwu E. ;
Hoff, Karl A. ;
Svendsen, Hallvard F. .
CHEMICAL ENGINEERING SCIENCE, 2011, 66 (17) :3859-3867
[3]   Solvent selection for carbon dioxide absorption [J].
Aronu, Ugochukwu E. ;
Svendsen, Hallvard F. ;
Hoff, Karl Anders ;
Juliussen, Olav .
GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01) :1051-1057
[4]   Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility [J].
Bishnoi, S ;
Rochelle, GT .
CHEMICAL ENGINEERING SCIENCE, 2000, 55 (22) :5531-5543
[5]  
CHAKRAVARTY T, 1985, CHEM ENG PROG, V81, P32
[6]   Densities and volumetric properties of the aqueous solutions of 2-amino-2-methyl-1-propanol, n-butyldiethanolamine and n-propylethanolamine at temperatures from 298.15 to 353.15 K [J].
Chan, C ;
Maham, Y ;
Mather, AE ;
Mathonat, C .
FLUID PHASE EQUILIBRIA, 2002, 198 (02) :239-250
[7]   Kinetics of absorption of carbon dioxide in aqueous piperazine solutions [J].
Derks, P. W. J. ;
Kleingeld, T. ;
van Aken, C. ;
Hogendoom, J. A. ;
Versteeg, G. F. .
CHEMICAL ENGINEERING SCIENCE, 2006, 61 (20) :6837-6854
[8]   Performance modelling of a carbon dioxide removal system for power plants [J].
Desideri, U ;
Paolucci, A .
ENERGY CONVERSION AND MANAGEMENT, 1999, 40 (18) :1899-1915
[9]   Experimental validation of a rate-based model for CO2 capture using an AMP solution [J].
Gabrielsen, Jostein ;
Svendsen, Hallvard F. ;
Michelsen, Michael L. ;
Stenby, Erling H. ;
Kontogeorgis, Georglos M. .
CHEMICAL ENGINEERING SCIENCE, 2007, 62 (09) :2397-2413
[10]   SOLUBILITY OF H2S AND CO2 IN AQUEOUS METHYLDIETHANOLAMINE SOLUTIONS [J].
JOU, FY ;
MATHER, AE ;
OTTO, FD .
INDUSTRIAL & ENGINEERING CHEMISTRY PROCESS DESIGN AND DEVELOPMENT, 1982, 21 (04) :539-544