The role of root apoplastic barriers in cadmium translocation and accumulation in cultivars of rice (Oryza sativa L.) with different Cd-accumulating characteristics

被引:75
|
作者
Qi, Xiaoli [1 ]
Tam, Nora Fung-yee [2 ]
Li, Wai Chin [3 ]
Ye, Zhihong [1 ]
机构
[1] Sun Yat Sen Univ, Sch Life Sci, Guangzhou 510006, Peoples R China
[2] City Univ Hong Kong, Dept Chem, Kowloon, Hong Kong, Peoples R China
[3] Educ Univ Hong Kong, Dept Sci & Environm Studies, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Apoplastic barriers; Bypass flow; Cadmium accumulation; Rice; RADIAL OXYGEN LOSS; ENDODERMAL CELL-WALLS; CHEMICAL-COMPOSITION; SOLUTE PERMEABILITIES; ADVENTITIOUS ROOTS; GRAIN CADMIUM; TOLERANCE; ANATOMY; TRANSPORT; WATER;
D O I
10.1016/j.envpol.2020.114736
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The radial translocation of cadmium (Cd) from the root to the shoot is one of the major processes affecting Cd accumulation in rice (Oryza sativa L.) grains, but few studies have focused on Cd apoplastic transport in rice. The aim of this study was to determine how apoplastic barriers affect Cd translocation via the apoplastic pathway, Cd accumulation levels in upper parts (shoot and grains) of rice cultivars, and the possible mechanism involved. Hydroponic and soil pot trials were conducted to study the development and chemical constituents of apoplastic barriers and their permeability to bypass flow, and to determine Cd localization in the roots of rice cultivars with different Cd-accumulating characteristics. The Cd accumulation in upper parts was positively correlated with bypass flow in the root and the apparent Cd concentration in the xylem, indicating that the apoplastic pathway may play an important role in Cd root-shoot translocation in rice. Apoplastic barriers were deposited closer to the root tip and were thicker in low Cd-accumulating cultivars than in high Cd-accumulating cultivars. The amounts and rates of increase in lignin and suberin were significantly higher in ZD14 (a low Cd-accumulating cultivar) than in FYXZ (a high Cd-accumulating cultivar) under Cd stress, indicating that stronger barriers were induced by Cd in ZD14. The stronger and earlier formation of barriers in the low Cd-accumulating cultivar decreased bypass flow more efficiently, so that more Cd was retained in the root during apoplastic translocation. This was confirmed by localization analyses of Cd in root transverse sections. These results suggest that apoplastic barriers reduce Cd root-to-shoot translocation via the apoplastic pathway, leading to lower Cd accumulation in the upper parts of rice plants. Bypass flow may have the potential to be used as a rapid screening indicator for low Cd-accumulating rice cultivars. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (Oryza sativa L.) cultivars
    Hang Zhou
    Min Zeng
    Xin Zhou
    Bo-Han Liao
    Pei-Qin Peng
    Miao Hu
    Wei Zhu
    Yu-Jun Wu
    Zi-Jin Zou
    Plant and Soil, 2015, 386 : 317 - 329
  • [32] Effect of cadmium stress on inorganic and organic components in xylem sap of high cadmium accumulating rice line (Oryza sativa L.)
    Fu, Huijie
    Yu, Haiying
    Li, Tingxuan
    Wu, Yao
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2019, 168 : 330 - 337
  • [33] Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (Oryza sativa L.) cultivars
    Zhou, Hang
    Zeng, Min
    Zhou, Xin
    Liao, Bo-Han
    Peng, Pei-Qin
    Hu, Miao
    Zhu, Wei
    Wu, Yu-Jun
    Zou, Zi-Jin
    PLANT AND SOIL, 2015, 386 (1-2) : 317 - 329
  • [34] Influence of iron plaque on chromium accumulation and translocation in three rice (Oryza sativa L.) cultivars grown in solution culture
    Hu, Y.
    Huang, Y. Z.
    Liu, Y. X.
    CHEMISTRY AND ECOLOGY, 2014, 30 (01) : 29 - 38
  • [35] Genotypic variation in the uptake, accumulation, and translocation of di-(2-ethylhexyl) phthalate by twenty cultivars of rice (Oryza sativa L.)
    Cai, Quan-Ying
    Xiao, Pei-Yun
    Chen, Tong
    Lu, Huixiong
    Zhao, Hai-Ming
    Zeng, Qiao-Yun
    Li, Yan-Wen
    Li, Hui
    Xiang, Lei
    Mo, Ce-Hui
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2015, 116 : 50 - 58
  • [36] Selenate simultaneously alleviated cadmium and arsenic accumulation in rice ( Oryza sativa L.) via regulating transport genes
    Huang, Siyu
    Wang, Qiqi
    Qi, Hao
    Liu, Zhe
    Tao, Yanjin
    Fan, Yu
    Wang, Qi
    Li, Huafen
    Wan, Yanan
    ENVIRONMENTAL POLLUTION, 2024, 359
  • [37] Variation in accumulation and translocation of di-n-butyl phthalate (DBP) among rice (Oryza sativa L.) genotypes and selection of cultivars for low DBP exposure
    Cai, Quan-Ying
    Xiao, Pei-Yun
    Zhao, Hai-Ming
    Lu, Huixiong
    Zeng, Qiao-Yun
    Li, Yan-Wen
    Li, Hui
    Xiang, Lei
    Mo, Ce-Hui
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2017, 24 (08) : 7298 - 7309
  • [38] Mapping of QTLs associated with cadmium tolerance and accumulation during seedling stage in rice (Oryza sativa L.)
    Dawei Xue
    Mingcan Chen
    Guoping Zhang
    Euphytica, 2009, 165
  • [39] Mapping of QTLs associated with cadmium tolerance and accumulation during seedling stage in rice (Oryza sativa L.)
    Xue, Dawei
    Chen, Mingcan
    Zhang, Guoping
    EUPHYTICA, 2009, 165 (03) : 587 - 596
  • [40] Split application of silicon in cadmium (Cd) spiked alkaline soil plays a vital role in decreasing Cd accumulation in rice (Oryza sativa L.) grains
    Rehman, Muhammad Zia Ur
    Rizwan, Muhammad
    Rauf, Arslan
    Ayub, Muhammad Ashar
    Ali, Shafaqat
    Qayyum, Muhammad Farooq
    Waris, Aisha A.
    Naeem, Asif
    Sanaullah, Muhammad
    CHEMOSPHERE, 2019, 226 : 454 - 462