Finite groups whose conjugacy class sizes of primary and biprimary elements are Hall numbers

被引:0
作者
Shao, Changguo [1 ]
Jiang, Qinhui [1 ]
机构
[1] Univ Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2020年 / 96卷 / 3-4期
关键词
finite groups; conjugacy class sizes; primary and biprimary elements; Hall numbers; LENGTH;
D O I
10.5486/PMD.2020.8464
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group, and m be a positive integer. Then m is called a Hall number of G if m is a positive divisor of vertical bar G vertical bar satisfying gcd(vertical bar G vertical bar/m, m) = 1. In this paper, we classify finite groups whose conjugacy class sizes of primary and biprimary elements are Hall numbers.
引用
收藏
页码:281 / 289
页数:9
相关论文
共 11 条
  • [1] GROUP ELEMENTS OF PRIME POWER INDEX
    BAER, R
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 75 (JUL) : 20 - 47
  • [2] APPLICATIONS OF A GRAPH RELATED TO CONJUGACY CLASSES IN FINITE-GROUPS
    BIANCHI, M
    CHILLAG, D
    MAURI, AGB
    HERZOG, M
    SCOPPOLA, CM
    [J]. ARCHIV DER MATHEMATIK, 1992, 58 (02) : 126 - 132
  • [3] CHARACTER TABLES DETERMINE ABELIAN SYLOW 2-SUBGROUPS
    CAMINA, AR
    HERZOG, M
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 80 (03) : 533 - 535
  • [4] ON THE LENGTH OF THE CONJUGACY CLASSES OF FINITE-GROUPS
    CHILLAG, D
    HERZOG, M
    [J]. JOURNAL OF ALGEBRA, 1990, 131 (01) : 110 - 125
  • [5] Gorenstein D., 1980, FINITE GROUPS
  • [6] Huppert, 1967, ENDLICHE GRUPP
  • [7] Ito N., 1953, NAGOYA MATH J, V6, P17, DOI DOI 10.1017/S0027763000016937
  • [8] Kurzweil H., 2004, UNIVERSITEX, DOI 10.1007/b97433
  • [9] Notes on the length of conjugacy classes of finite groups
    Liu, XL
    Wang, YM
    Wei, HQ
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2005, 196 (01) : 111 - 117
  • [10] On Class Size of p-Singular Elements in Finite Groups
    Qian, Guohua
    Wang, Yanming
    [J]. COMMUNICATIONS IN ALGEBRA, 2009, 37 (04) : 1172 - 1181