Role of the Coronal Environment in the Formation of Four Shocks Observed without Coronal Mass Ejections at Earth's Lagrangian Point L1

被引:3
作者
Pick, M. [1 ]
Magdalenic, J. [2 ]
Cornilleau-Wehrlin, N. [1 ,3 ]
Grison, B. [4 ]
Schmieder, B. [1 ,5 ]
Bocchialini, K. [6 ]
机构
[1] PSL Res Univ, Sorbonne Univ, Univ Paris Diderot,CNRS, Observ Paris,LESIA,Univ Paris 06,Sorbonne Paris S, 5 Pl Jules Janssen, F-92195 Meudon, France
[2] Royal Observ Belgium, Solar Terr Ctr Excellence SIDC, Av Circulaire 3, B-1180 Brussels, Belgium
[3] Univ Paris Sud, Observ Paris, Sorbonne Univ, Ecole Polytech,LPP,CNRS, F-91128 Palaiseau, France
[4] Czech Acad Sci, Inst Atmospher Phys, Dept Space Phys, Bocni II,1401, Prague 14100 4, Czech Republic
[5] Katholieke Univ Leuven, Dept Math, Ctr Math Plasma Astrophys, B-3001 Leuven, Belgium
[6] Univ Paris Saclay, Inst Astrophys Spatiale, CNRS, Batiment 121, F-91405 Orsay, France
关键词
Solar coronal mass ejections; Interplanetary shocks; Solar coronal radio emission; II RADIO-BURSTS; INTERPLANETARY SHOCKS; LARGE-ANGLE; WAVES; ORIGIN; CME; DISTURBANCES; DENSITY;
D O I
10.3847/1538-4357/ab8fae
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The main goal of this study is to determine the solar origin of four single shocks observed at the Lagrange point L1 and followed by storm sudden commencements (SSCs) during 2002. We look for associated coronal mass ejections (CMEs), starting from estimates of the transit time from Sun to Earth. For each CME, we investigate its association with a radio type II burst, an indicator of the presence of a shock wave. For three of the events, the type II burst is shown to propagate along the same, or a similar, direction as the fastest segment of the CME leading edge. We analyze for each event the role of the coronal environment in the CME development, the shock formation, and their propagation, to finally identify its complex evolution. The ballistic velocity of these shocks during their propagation from the corona to L1 is compared to the shock velocity at L1. Based on a detailed analysis of the shock propagation and possible interactions up to 30 solar radii, we find a coherent velocity evolution for each event, in particular for one event, the 2002 April 14 SSC, for which a previous study did not find a satisfactory CME source. For the other three events, we observe the formation of a white-light shock overlying the different sources associated with those events. The localization of the event sources over the poles, together with an origin of the shocks being due to encounters of CMEs, can explain why at L1 we observe only single shocks and not interplanetary CMEs.
引用
收藏
页数:15
相关论文
共 44 条
[1]   A two-type classification of LASCO coronal mass ejection [J].
Andrews, MD ;
Howard, RA .
SPACE SCIENCE REVIEWS, 2001, 95 (1-2) :147-163
[2]   Statistical Analysis of Solar Events Associated with Storm Sudden Commencements over One Year of Solar Maximum During Cycle 23: Propagation from the Sun to the Earth and Effects [J].
Bocchialini, K. ;
Grison, B. ;
Menvielle, M. ;
Chambodut, A. ;
Cornilleau-Wehrlin, N. ;
Fontaine, D. ;
Marchaudon, A. ;
Pick, M. ;
Pitout, F. ;
Schmieder, B. ;
Regnier, S. ;
Zouganelis, I. .
SOLAR PHYSICS, 2018, 293 (05)
[3]   WAVES - THE RADIO AND PLASMA-WAVE INVESTIGATION ON THE WIND SPACECRAFT [J].
BOUGERET, JL ;
KAISER, ML ;
KELLOGG, PJ ;
MANNING, R ;
GOETZ, K ;
MONSON, SJ ;
MONGE, N ;
FRIEL, L ;
MEETRE, CA ;
PERCHE, C ;
SITRUK, L ;
HOANG, S .
SPACE SCIENCE REVIEWS, 1995, 71 (1-4) :231-263
[4]   The large angle spectroscopic coronagraph (LASCO) [J].
Brueckner, GE ;
Howard, RA ;
Koomen, MJ ;
Korendyke, CM ;
Michels, DJ ;
Moses, JD ;
Socker, DG ;
Dere, KP ;
Lamy, PL ;
Llebaria, A ;
Bout, MV ;
Schwenn, R ;
Simnett, GM ;
Bedford, DK ;
Eyles, CJ .
SOLAR PHYSICS, 1995, 162 (1-2) :357-402
[5]   ENERGETIC INTERPLANETARY SHOCKS, RADIO-EMISSION, AND CORONAL MASS EJECTIONS [J].
CANE, HV ;
SHEELEY, NR ;
HOWARD, RA .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1987, 92 (A9) :9869-9874
[6]   ACE spacecraft [J].
Chiu, MC ;
Von-Mehlem, UI ;
Willey, CE ;
Betenbaugh, TM ;
Maynard, JJ ;
Krein, JA ;
Conde, RF ;
Gray, WT ;
Hunt, JW ;
Mosher, LE ;
McCullough, MG ;
Panneton, PE ;
Staiger, JP ;
Rodberg, EH .
SPACE SCIENCE REVIEWS, 1998, 86 (1-4) :257-284
[7]   A study of CME and type II shock kinematics based on coronal density measurement [J].
Cho, K. -S. ;
Lee, J. ;
Moon, Y. -J. ;
Dryer, M. ;
Bong, S. -C. ;
Kim, Y. -H. ;
Park, Y. D. .
ASTRONOMY & ASTROPHYSICS, 2007, 461 (03) :1121-1125
[8]   Low coronal observations of metric type II associated CMEs by MLSO coronameters [J].
Cho, K. -S. ;
Bong, S. -C. ;
Kim, Y. -H. ;
Moon, Y. -J. ;
Dryer, M. ;
Shanmugaraju, A. ;
Lee, J. ;
Park, Y. D. .
ASTRONOMY & ASTROPHYSICS, 2008, 491 (03) :873-882
[9]   EIT: Extreme-ultraviolet imaging telescope for the SOHO mission [J].
Delaboudiniere, JP ;
Artzner, GE ;
Brunaud, J ;
Gabriel, AH ;
Hochedez, JF ;
Millier, F ;
Song, XY ;
Au, B ;
Dere, KP ;
Howard, RA ;
Kreplin, R ;
Michels, DJ ;
Moses, JD ;
Defise, JM ;
Jamar, C ;
Rochus, P ;
Chauvineau, JP ;
Marioge, JP ;
Catura, RC ;
Lemen, JR ;
Shing, L ;
Stern, RA ;
Gurman, JB ;
Neupert, WM ;
Maucherat, A ;
Clette, F ;
Cugnon, P ;
VanDessel, EL .
SOLAR PHYSICS, 1995, 162 (1-2) :291-312
[10]   INITIATION AND DEVELOPMENT OF THE WHITE-LIGHT AND RADIO CORONAL MASS EJECTION ON 2001 APRIL 15 [J].
Demoulin, P. ;
Vourlidas, A. ;
Pick, M. ;
Bouteille, A. .
ASTROPHYSICAL JOURNAL, 2012, 750 (02)