Design, modeling and experimental investigation of a magnetically modulated rotational energy harvester for low frequency and irregular vibration

被引:39
作者
Zhao, LinChuan [1 ]
Zou, HongXiang [1 ,2 ]
Gao, QiuHua [1 ]
Yan, Ge [1 ]
Wu, ZhiYuan [1 ]
Liu, FengRui [1 ]
Wei, KeXiang [2 ]
Yang, Bin [3 ]
Zhang, WenMing [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
[2] Hunan Inst Engn, Hunan Prov Key Lab Vehicle Power & Transmiss Syst, Xiangtan 411104, Peoples R China
[3] Shanghai Jiao Tong Univ, Natl Key Lab Sci & Technol Micro Nano Fabricat, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
energy harvesting; vibration; low frequency; magnetically modulated route; MOTION;
D O I
10.1007/s11431-020-1595-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Vibration energy harvesting is a promising approach for sustainable energy generation from ambience to meet the development of self-powered systems. Here, we propose a novel compact non-resonant magnetically modulated rotational energy harvester (MMR-EH) for low frequency and irregular vibration. Through the rational arrangement of multiple magnetic fields in space, a ring route with low potential energy is established. A movable magnet can be non-contact modulated by the magnetic force to move along the ring route under irregular vibration, which is instrumental in electromechanical energy conversion. A dynamic model of the MMR-EH is developed based on the energy method and verified experimentally. The effects of key parameters on the magnetically modulated route are analysed. The simulation and experimental results demonstrate that the MMR-EH can effectively harvest the energy from ultra-low frequency (3 Hz) and irregular vibration. At a reciprocating vibration frequency of 10 Hz and an amplitude of 20 mm, the harvester can produce an average power of 0.29 mW.
引用
收藏
页码:2051 / 2062
页数:12
相关论文
共 50 条
  • [31] Modeling and Experimental Study of Vibration Energy Harvester with Triple-Frequency-Up Voltage Output by Vibration Mode Switching
    Xu, Jiawen
    Liu, Zhikang
    Dai, Wenxing
    Zhang, Ru
    Ge, Jianjun
    MICROMACHINES, 2024, 15 (08)
  • [32] A rotational energy harvester with a semi-flexible one-way clutch for capturing low-frequency vibration energy
    Li, Rongchun
    Fan, Kangqi
    Ma, Xiaoyu
    Wen, Tao
    Liu, Qingli
    Gao, Xianming
    Zhu, Jiuling
    Zhang, Yan
    ENERGY, 2023, 281
  • [33] Modeling of a Rope-Driven Piezoelectric Vibration Energy Harvester for Low-Frequency and Wideband Energy Harvesting
    Zhang, Jinhui
    Lin, Maoyu
    Zhou, Wei
    Luo, Tao
    Qin, Lifeng
    MICROMACHINES, 2021, 12 (03)
  • [34] An efficient low frequency horizontal diamagnetic levitation mechanism based vibration energy harvester
    Palagummi, S.
    Yuan, F. G.
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2016, 2016, 9799
  • [35] A Magnetically Coupled Electromagnetic Energy Harvester with Low Operating Frequency for Human Body Kinetic Energy
    Li, Xiang
    Meng, Jinpeng
    Yang, Chongqiu
    Zhang, Huirong
    Zhang, Leian
    Song, Rujun
    MICROMACHINES, 2021, 12 (11)
  • [36] Design and development of frequency tuneable vibration based piezoelectric energy harvester
    Pradeesh, E. L.
    Udhayakumar, S.
    Vasundhara, M. G.
    Nijandhan, K.
    FERROELECTRICS, 2021, 584 (01) : 85 - 99
  • [37] Electromechanical Modeling of the Low-Frequency Zigzag Micro-Energy Harvester
    Karami, M. Amin
    Inman, Daniel J.
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2011, 22 (03) : 271 - 282
  • [38] A low-frequency vibration energy harvester based on diamagnetic levitation
    Kono, Yuta
    Masuda, Arata
    Yuan, Fuh-Gwo
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2017, 2017, 10164
  • [39] Design and characteristic analysis of a novel deformation-controllable piezoelectric vibration energy harvester for low frequency
    Zhang, Zhonghua
    Lin, Shijie
    Gu, Yiqun
    Zhang, Li
    Wang, Shuyun
    Zhai, Shijie
    Kan, Junwu
    ENERGY CONVERSION AND MANAGEMENT, 2023, 286
  • [40] Investigation of Design Parameters in MEMS Based Piezoelectric Vibration Energy Harvester
    Sil, Indrajit
    Biswas, Kalyan
    PROCEEDINGS OF 2018 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES KOLKATA CONFERENCE (IEEE EDKCON), 2018, : 64 - 69