Treatment of recalcitrant crystalline polysaccharides with lytic polysaccharide monooxygenase relieves the need for glycoside hydrolase processivity

被引:19
作者
Hamre, Anne Grethe [1 ]
Stromnes, Anne-Grethe Skaarberg [1 ]
Gustavsen, Daniel [1 ]
Vaaje-Kolstad, Gustav [1 ]
Eijsink, Vincent G. H. [1 ]
Sorlie, Morten [1 ]
机构
[1] Norwegian Univ Life Sci, Dept Chem Biotechnol & Food Sci, PO 5003, N-1432 As, Norway
关键词
Processivity; Glycoside hydrolase; Lytic polysaccharide monooxygenase; Recalcitrant polysaccharides; SERRATIA-MARCESCENS; DEGRADATION; CHITIN; BINDING; FAMILY; CELLULASE; HYDROLYSIS; ACTIVATION; MECHANISM; INSIGHT;
D O I
10.1016/j.carres.2019.01.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Processive glycoside hydrolases associate with recalcitrant polysaccharides such as cellulose and chitin and repeatedly cleave glycosidic linkages without fully dissociating from the crystalline surface. The processive mechanism is efficient in the degradation of insoluble substrates, but comes at the cost of reduced enzyme speed. We show that less processive chitinase variants with reduced ability to degrade crystalline chitin, regain much of this ability when combined with a lytic polysaccharide monooxygenase (LPMO). When combined with an LPMO, several less processive chitinase mutants showed equal or even increased activity on chitin compared to the wildtype. Thus, LPMOs affect the need for processivity in polysaccharide degrading enzyme cocktails, which implies that the composition of such cocktails may need reconsideration.
引用
收藏
页码:66 / 71
页数:6
相关论文
共 43 条
[1]   Modeling cellulase kinetics on lignocellulosic substrates [J].
Bansal, Prabuddha ;
Hall, Melanie ;
Realff, Matthew J. ;
Lee, Jay H. ;
Bommarius, Andreas S. .
BIOTECHNOLOGY ADVANCES, 2009, 27 (06) :833-848
[2]   Towards a molecular-level theory of carbohydrate processivity in glycoside hydrolases [J].
Beckham, Gregg T. ;
Stahlberg, Jerry ;
Knott, Brandon C. ;
Himmel, Michael E. ;
Crowley, Michael F. ;
Sandgren, Mats ;
Sorlie, Morten ;
Payne, Christina M. .
CURRENT OPINION IN BIOTECHNOLOGY, 2014, 27 :96-106
[3]   The conformational free energy landscape of β-D-glucopyranose. implications for substrate preactivation in β-glucoside hydrolases [J].
Biarnes, Xevi ;
Ardevol, Albert ;
Planas, Antoni ;
Rovira, Carme ;
Laio, Alessandro ;
Parrinello, Michele .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (35) :10686-10693
[4]  
Bissaro B, 2017, NAT CHEM BIOL, V13, P1123, DOI [10.1038/NCHEMBIO.2470, 10.1038/nchembio.2470]
[5]   CHARACTERIZATION OF A CHITINASE GENE (CHIA) FROM SERRATIA-MARCESCENS BJL200 AND ONE-STEP PURIFICATION OF THE GENE-PRODUCT [J].
BRURBERG, MB ;
EIJSINK, VGH ;
NES, IF .
FEMS MICROBIOLOGY LETTERS, 1994, 124 (03) :399-404
[6]   Comparative studies of chitinases A and B from Serratia marcescens [J].
Brurberg, MB ;
Nes, IF ;
Eijsink, VGH .
MICROBIOLOGY-SGM, 1996, 142 :1581-1589
[7]   CHITINASE-B FROM SERRATIA-MARCESCENS-BJL200 IS EXPORTED TO THE PERIPLASM WITHOUT PROCESSING [J].
BRURBERG, MB ;
EIJSINK, VGH ;
HAANDRIKMAN, AJ ;
VENEMA, G ;
NES, IF .
MICROBIOLOGY-SGM, 1995, 141 :123-131
[8]   Probing Substrate Interactions in the Active Tunnel of a Catalytically Deficient Cellobiohydrolase (Cel7) [J].
Colussi, Francieli ;
Sorensen, Trine H. ;
Alasepp, Kadri ;
Kari, Jeppe ;
Cruys-Bagger, Nicolaj ;
Windahl, Michael S. ;
Olsen, Johan P. ;
Borch, Kim ;
Westh, Peter .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2015, 290 (04) :2444-2454
[9]   STRUCTURES AND MECHANISMS OF GLYCOSYL HYDROLASES [J].
DAVIES, G ;
HENRISSAT, B .
STRUCTURE, 1995, 3 (09) :853-859
[10]   Cellulose Surface Degradation by a Lytic Polysaccharide Monooxygenase and Its Effect on Cellulase Hydrolytic Efficiency [J].
Eibinger, Manuel ;
Ganner, Thomas ;
Bubner, Patricia ;
Rosker, Stephanie ;
Kracher, Daniel ;
Haltrich, Dietmar ;
Ludwig, Roland ;
Plank, Harald ;
Nidetzky, Bernd .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (52) :35929-35938