Particle Swarm Optimization Based Approach for Finding Optimal Values of Convolutional Neural Network Parameters

被引:20
作者
Sinha, Toshi [1 ]
Haidar, Ali [1 ]
Verma, Brijesh [1 ]
机构
[1] Cent Queensland Univ, Sch Engn & Technol, Ctr Intelligent Syst, Rockhampton, Qld, Australia
来源
2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2018年
关键词
Convolutional Neural Networks; Optimization; Particle Swarm Optimization; Image Classification; CODED GENETIC ALGORITHM;
D O I
10.1109/CEC.2018.8477728
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional Neural Networks (CNNs) have demonstrated great potential in complex image classification problems in past few years. CNNs have a large number of parameters and the system accuracy depends directly on the selection of these parameters. With diverse parameters, selection of optimal parameter remains a trial and error, ad hoc or expert's mercy. In practice, optimal parameter selection remains the biggest obstacle in designing a real-world application using CNN. Convolutional neural network's performance is highly affected by its parameters. A novel approach is proposed in this paper to select convolutional neural network parameters in an image classification task. The proposed approach incorporated particle swarm optimization to select the parameters of the convolutional network. Two datasets, one benchmark CIFAR-10 and one real world application dataset, road-side vegetation dataset, were selected to evaluate the proposed approach. It is demonstrated that proposed approach efficiently explores the solution space, and determines the best combination of parameters. Extensive experiments, along with the statistical tests, revealed that proposed approach is an effective technique for automatically optimizing CNN's parameters.
引用
收藏
页码:1500 / 1505
页数:6
相关论文
共 50 条
  • [21] Particle Swarm Optimization for Automatically Evolving Convolutional Neural Networks for Image Classification
    Lawrence, Tom
    Zhang, Li
    Lim, Chee Peng
    Phillips, Emma-Jane
    IEEE ACCESS, 2021, 9 : 14369 - 14386
  • [22] A Neural Network Learning Algorithm Based on Hybrid Particle Swarm Optimization
    Luo Zaifei
    Guan Binglei
    Zhou Shiguan
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 3255 - 3259
  • [23] An Improved Particle Swarm Optimization based Neural Network Training for Classification
    Mondal, Palash
    Nandi, Arijit
    Jana, Nanda Dulal
    PROCEEDINGS OF 2019 IEEE REGION 10 SYMPOSIUM (TENSYMP), 2019, : 681 - 686
  • [24] A new evolved artificial neural network based on particle swarm optimization
    Zhang, GY
    Sha, Y
    Zhang, J
    ISTM/2005: 6TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-9, CONFERENCE PROCEEDINGS, 2005, : 9347 - 9349
  • [25] Convolutional neural networks optimization using multi-objective particle swarm optimization algorithm
    Rashno, Armin
    Fadaei, Sadegh
    INFORMATION SCIENCES, 2025, 689
  • [26] A Forecasting Model of RBF Neural Network Based on Particle Swarm Optimization
    Pan, Yumin
    Huang, Chengyu
    Zhang, Quanzhu
    MECHATRONIC SYSTEMS AND AUTOMATION SYSTEMS, 2011, 65 : 605 - 612
  • [27] The optimal combination: Grammatical swarm, particle swarm optimization and neural networks
    de Mingo Lopez, Luis Fernando
    Gomez Blas, Nuria
    Arteta, Alberto
    JOURNAL OF COMPUTATIONAL SCIENCE, 2012, 3 (1-2) : 46 - 55
  • [28] Intelligent Geodemographic Clustering Based on Neural Network and Particle Swarm Optimization
    Ghahramani, Mohammadhossein
    O'Hagan, Adrian
    Zhou, MengChu
    Sweeney, James
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (06): : 3746 - 3756
  • [29] A HYBRID APPROACH OF NEURAL NETWORK WITH PARTICLE SWARM OPTIMIZATION FOR TOBACCO PESTS PREDICTION
    Lv, Jiake
    Wang, Xuan
    Xie, Deti
    Wei, Chaofu
    COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE II, VOLUME 2, 2009, 295 : 1251 - 1260
  • [30] TRAINING MATRIX PARAMETERS BY PARTICLE SWARM OPTIMIZATION USING A FUZZY NEURAL NETWORK FOR IDENTIFICATION
    Shafiabady, Niusha
    Teshnehlab, M.
    Shooredeli, M. Aliyari
    ICIAS 2007: INTERNATIONAL CONFERENCE ON INTELLIGENT & ADVANCED SYSTEMS, VOLS 1-3, PROCEEDINGS, 2007, : 188 - +