Hugely Enhanced Output Power of Direct-Current Triboelectric Nanogenerators by Using Electrostatic Breakdown Effect

被引:64
作者
Liu, Di [1 ,2 ]
Zhou, Linglin [1 ,2 ]
Li, Shaoxin [1 ,2 ]
Zhao, Zhihao [1 ]
Yin, Xing [1 ,2 ]
Yi, Zhiying [1 ]
Zhang, Chunlei [1 ,2 ]
Li, Xinyuan [1 ,2 ]
Wang, Jie [1 ,2 ]
Wang, Zhong Lin [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Coll Nanosci & Technol, Beijing 100049, Peoples R China
[3] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
contact electrification; electrostatic breakdown; mechanical energy harvesting; thermal energy harvesting; triboelectric nanogenerators;
D O I
10.1002/admt.202000289
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrostatic breakdown is a common but generally negative physical phenomenon. Here, efficient conversion of mechanical energy to electric power is achieved by enhanced direct-current triboelectric nanogenerator (DC-TENG) based on contact electrification and electrostatic breakdown. By verifying the high temperature can not only improve the triboelectric charge density but also enhance electrostatic breakdown of air dielectric due to thermionic emission of electrons and avalanche breakdown effect. Meanwhile an appropriate low atmosphere pressure is another favorable factor to air breakdown in DC-TENG. As a result, its output power density is improved by three orders of magnitude at 473 K and 300 Pa compared to that at 298 K and standard atmosphere pressure. These findings not only provide a new paradigm to design high-performance TENG, but realize efficiently harvesting mechanical energy and thermal energy in one device by coupling the two kinds of physical effects.
引用
收藏
页数:8
相关论文
共 30 条
[1]   Control of Surface Charges by Radicals as a Principle of Antistatic Polymers Protecting Electronic Circuitry [J].
Baytekin, H. Tarik ;
Baytekin, Bilge ;
Hermans, Thomas M. ;
Kowalczyk, Bartlomiej ;
Grzybowski, Bartosz A. .
SCIENCE, 2013, 341 (6152) :1368-1371
[2]   Triboelectric microplasma powered by mechanical stimuli [J].
Cheng, Jia ;
Ding, Wenbo ;
Zi, Yunlong ;
Lu, Yijia ;
Ji, Linhong ;
Liu, Fan ;
Wu, Changsheng ;
Wang, Zhong Lin .
NATURE COMMUNICATIONS, 2018, 9
[3]   A dielectric polymer with high electric energy density and fast discharge speed [J].
Chu, Baojin ;
Zhou, Xin ;
Ren, Kailiang ;
Neese, Bret ;
Lin, Minren ;
Wang, Qing ;
Bauer, F. ;
Zhang, Q. M. .
SCIENCE, 2006, 313 (5785) :334-336
[4]   TriboPump: A Low-Cost, Hand-Powered Water Disinfection System [J].
Ding, Wenbo ;
Zhou, Jianfeng ;
Cheng, Jia ;
Wang, Zhaozheng ;
Guo, Hengyu ;
Wu, Changsheng ;
Xu, Sixing ;
Wu, Zhiyi ;
Xie, Xing ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2019, 9 (27)
[5]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334
[6]   Triboelectric nanogenerators for electro-assisted cell printing [J].
Huo, Hengning ;
Liu, Fan ;
Luo, Yixue ;
Gu, Qian ;
Liu, Yuan ;
Wang, Zhaozheng ;
Chen, Ruoyu ;
Ji, Linhong ;
Lu, Yijia ;
Yao, Rui ;
Cheng, Jia .
NANO ENERGY, 2020, 67
[7]   A Fully Self-Powered Vibration Monitoring System Driven by Dual-Mode Triboelectric Nanogenerators [J].
Li, Shaoxin ;
Liu, Di ;
Zhao, Zhihao ;
Zhou, Linglin ;
Yin, Xing ;
Li, Xinyuan ;
Gao, Yikui ;
Zhang, Chuguo ;
Zhang, Qing ;
Wang, Jie ;
Wang, Zhong Lin .
ACS NANO, 2020, 14 (02) :2475-2482
[8]   Electron Transfer in Nanoscale Contact Electrification: Effect of Temperature in the Metal-Dielectric Case [J].
Lin, Shiquan ;
Xu, Liang ;
Xu, Cheng ;
Chen, Xiangyu ;
Wang, Aurelia C. ;
Zhang, Binbin ;
Lin, Pei ;
Yang, Ya ;
Zhao, Huabo ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2019, 31 (17)
[9]   A High Current Density Direct-Current Generator Based on a Moving van der Waals Schottky Diode [J].
Lin, Shisheng ;
Lu, Yanghua ;
Feng, Sirui ;
Hao, Zhenzhen ;
Yan, Yanfei .
ADVANCED MATERIALS, 2019, 31 (07)
[10]   A constant current triboelectric nanogenerator arising from electrostatic breakdown [J].
Liu, Di ;
Yin, Xing ;
Guo, Hengyu ;
Zhou, Linglin ;
Li, Xinyuan ;
Zhang, Chunlei ;
Wang, Jie ;
Wang, Zhong Lin .
SCIENCE ADVANCES, 2019, 5 (04)