Universal eigenstate entanglement of chaotic local Hamiltonians

被引:60
作者
Huang, Yichen [1 ]
机构
[1] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
关键词
GROUND-STATE ENTANGLEMENT; AVERAGE ENTROPY; STATISTICAL-MECHANICS; EXPONENTIAL DECAY; PAGES CONJECTURE; QUANTUM; THERMALIZATION; CHAIN; PROOF;
D O I
10.1016/j.nuclphysb.2018.09.013
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In systems governed by "chaotic" local Hamiltonians, we conjecture the universality of eigenstate entanglement (defined as the average entanglement entropy of all eigenstates) by proposing an exact formula for its dependence on the subsystem size. This formula is derived from an analytical argument based on a plausible assumption, and is supported by numerical simulations. (C) 2018 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:594 / 604
页数:11
相关论文
共 56 条
[1]   Universal Dynamics and Renormalization in Many-Body-Localized Systems [J].
Altman, Ehud ;
Vosk, Ronen .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 6, 2015, 6 :383-409
[2]  
[Anonymous], 2015, THESIS U CALIFORNIA
[3]   Connecting global and local energy distributions in quantum spin models on a lattice [J].
Arad, Itai ;
Kuwahara, Tomotaka ;
Landau, Zeph .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
[4]   ENTROPY INEQUALITIES [J].
ARAKI, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 18 (02) :160-&
[5]   Strong and Weak Thermalization of Infinite Nonintegrable Quantum Systems [J].
Banuls, M. C. ;
Cirac, J. I. ;
Hastings, M. B. .
PHYSICAL REVIEW LETTERS, 2011, 106 (05)
[6]   Unbounded Growth of Entanglement in Models of Many-Body Localization [J].
Bardarson, Jens H. ;
Pollmann, Frank ;
Moore, Joel E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (01)
[7]   Area laws in a many-body localized state and its implications for topological order [J].
Bauer, Bela ;
Nayak, Chetan .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
[8]   Exponential Decay of Correlations Implies Area Law [J].
Brandao, Fernando G. S. L. ;
Horodecki, Michal .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (02) :761-798
[9]  
Brandao FGSL, 2013, NAT PHYS, V9, P721, DOI [10.1038/NPHYS2747, 10.1038/nphys2747]
[10]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,