The Askey scheme for hypergeometric orthogonal polynomials viewed from asymptotic analysis

被引:11
作者
Temme, NM
López, JL
机构
[1] CWI, NL-1090 GB Amsterdam, Netherlands
[2] Univ Publ Navarra, Dpto Matemat & Informat, Pamplona 31006, Spain
关键词
Askey scheme; hypergeometric orthogonal polynomials; asymptotic analysis;
D O I
10.1016/S0377-0427(00)00683-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Many limits are known for hypergeometric orthogonal polynomials that occur in the Askey scheme. We show how asymptotic representations can be derived by using the generating functions of the polynomials. For example, we discuss the asymptotic representation of the Meixner-Pollaczek, Jacobi, Meixner, and Krawtchouk polynomials in terms of Laguerre polynomials. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:623 / 633
页数:11
相关论文
共 44 条
  • [31] From Euler and Navier-Stokes equations to shallow waters by asymptotic analysis
    Rodriguez, J. M.
    Taboada-Vazquez, R.
    ADVANCES IN ENGINEERING SOFTWARE, 2007, 38 (06) : 399 - 409
  • [32] A Dive Into the Asymptotic Analysis Theory: a Short Review from Fluids to Financial Markets
    Sbaiz, Gabriele
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2025, 41 (01): : 152 - 161
  • [33] On speeding up an asymptotic-analysis-based homogenisation scheme for designing gradient porous structured materials using a zoning strategy
    Xue, Dingchuan
    Zhu, Yichao
    Li, Shaoshuai
    Liu, Chang
    Zhang, Weisheng
    Guo, Xu
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 62 (02) : 457 - 473
  • [34] From Navier-Stokes equations to shallow waters with viscosity by asymptotic analysis
    Rodríguez, JM
    Taboada-Vázquez, R
    ASYMPTOTIC ANALYSIS, 2005, 43 (04) : 267 - 285
  • [35] On speeding up an asymptotic-analysis-based homogenisation scheme for designing gradient porous structured materials using a zoning strategy
    Dingchuan Xue
    Yichao Zhu
    Shaoshuai Li
    Chang Liu
    Weisheng Zhang
    Xu Guo
    Structural and Multidisciplinary Optimization, 2020, 62 : 457 - 473
  • [36] Mathematical models of electrical discharges in air at atmospheric pressure: a derivation from asymptotic analysis
    Degond, Pierre
    Lucquin-Desreux, Brigitte
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2007, 1 (01) : 58 - 97
  • [37] Asymptotic analysis of a two-step input-shaping scheme for suppressing motion-induced residual vibration of nonlinear mechanical systems
    Yang, Tian-Shiang
    Kao, Hsien-Tang
    Hu, Ian
    JOURNAL OF ENGINEERING MATHEMATICS, 2010, 67 (03) : 219 - 231
  • [38] Asymptotic analysis of a two-step input-shaping scheme for suppressing motion-induced residual vibration of nonlinear mechanical systems
    Tian-Shiang Yang
    Hsien-Tang Kao
    Ian Hu
    Journal of Engineering Mathematics, 2010, 67 : 219 - 231
  • [39] Asymptotic Formulations for the Effective Analysis of EM Scattering from Array Structures for the Propagation Mechanism Interpretation
    Chou, Hsi-Tseng
    Tuan, Shih-Chung
    Lu, Kung-Yu
    2014 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP), 2014, : 63 - 64
  • [40] Asymptotic analysis of the linearized Boltzmann collision operator from angular cutoff to non-cutoff
    He, Ling-Bing
    Zhou, Yu-Long
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2022, 39 (03): : 1097 - 1178