adding feasibility to the existing multiple objective challenge. Further, the presence of complex constraints poses a significant challenge to multi-objective evolutionary algorithms. A recently proposed biphasic multi-objective evolutionary framework for constrained multi-objective optimization problems is the Push and Pull Search framework. This framework benefits from a strong exploration of the constrained landscape during the search for the unconstrained Pareto-Front during the first phase. The work herein extends the Push and Pull Search framework, extending landscape information gathering in the push phase; adding a binary search of the feasible and infeasible regions and creating a suitably diverse population and improved initialization for the push phase.
机构:
Univ Lille, CNRS, UMR CRIStAL Inria Lille Nord Europe 9189, Villeneuve Dascq, FranceUniv Lille, CNRS, UMR CRIStAL Inria Lille Nord Europe 9189, Villeneuve Dascq, France
Derbel, Bilel
Liefooghe, Arnaud
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lille, CNRS, UMR CRIStAL Inria Lille Nord Europe 9189, Villeneuve Dascq, FranceUniv Lille, CNRS, UMR CRIStAL Inria Lille Nord Europe 9189, Villeneuve Dascq, France
Liefooghe, Arnaud
Zhang, Qingfu
论文数: 0引用数: 0
h-index: 0
机构:
City Univ, Dept Comp Sci, Kowloon Tong, Hong Kong, Peoples R ChinaUniv Lille, CNRS, UMR CRIStAL Inria Lille Nord Europe 9189, Villeneuve Dascq, France
Zhang, Qingfu
论文数: 引用数:
h-index:
机构:
Aguirre, Hernan
论文数: 引用数:
h-index:
机构:
Tanaka, Kiyoshi
PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIV,
2016,
9921
: 431
-
441