Extending the Push and Pull Search Framework with Boundary Search for Constrained Multi-Objective Optimization

被引:0
|
作者
Wisloff, Erling [1 ]
Aarsnes, Marius [1 ]
Ripon, Kazi Shah Nawaz [2 ]
Haddow, Pauline [3 ]
机构
[1] Norweg Univ Sci & Tech, Trondheim, Norway
[2] Ostfold Univ Coll, Halden, Norway
[3] Norweg Univ Sci & Tech, Trondheim, Norway
来源
PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022 | 2022年
关键词
constrained multi-objective optimization problems; landscape information; boundary search; binary search; EVOLUTIONARY ALGORITHM; MOEA/D;
D O I
10.1145/3520304.3528950
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
adding feasibility to the existing multiple objective challenge. Further, the presence of complex constraints poses a significant challenge to multi-objective evolutionary algorithms. A recently proposed biphasic multi-objective evolutionary framework for constrained multi-objective optimization problems is the Push and Pull Search framework. This framework benefits from a strong exploration of the constrained landscape during the search for the unconstrained Pareto-Front during the first phase. The work herein extends the Push and Pull Search framework, extending landscape information gathering in the push phase; adding a binary search of the feasible and infeasible regions and creating a suitably diverse population and improved initialization for the push phase.
引用
收藏
页码:367 / 370
页数:4
相关论文
共 50 条
  • [21] Multi-objective Baby Search Algorithm
    Liu, Yi
    Li, Gengsong
    Qin, Wei
    Li, Xiang
    Liu, Kun
    Wang, Qiang
    Zheng, Qibin
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2023, PT I, 2023, 13968 : 259 - 270
  • [22] Hybrid Heat Transfer Search and Passing Vehicle Search optimizer for multi-objective structural optimization
    Kumar, Sumit
    Tejani, Ghanshyam G.
    Pholdee, Nantiwat
    Bureerat, Sujin
    Mehta, Pranav
    KNOWLEDGE-BASED SYSTEMS, 2021, 212
  • [23] Multi-objective optimization approach based on Minimum Population Search algorithm
    Reyes-Fernandez-de-Bulnes, Darian
    Bolufe-Rohler, Antonio
    Tamayo-Vera, Dania
    GECONTEC-REVISTA INTERNACIONAL DE GESTION DEL CONOCIMIENTO Y LA TECNOLOGIA, 2019, 7 (02): : 1 - +
  • [24] An improved version of the multiple trajectory search for real value multi-objective optimization problems
    Chen, Chun
    Tseng, Lin-Yu
    ENGINEERING OPTIMIZATION, 2014, 46 (10) : 1430 - 1445
  • [25] Multi-objective general variable neighborhood search for software maintainability optimization
    Yuste, Javier
    Pardo, Eduardo G.
    Duarte, Abraham
    Hao, Jin-Kao
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [26] Solving multi-objective optimization problem using cuckoo search algorithm based on decomposition
    Chen, Liang
    Gan, Wenyan
    Li, Hongwei
    Cheng, Kai
    Pan, Darong
    Chen, Li
    Zhang, Zili
    APPLIED INTELLIGENCE, 2021, 51 (01) : 143 - 160
  • [27] A Niching Multi-objective Harmony Search Algorithm for Multimodal Multi-objective Problems
    Qu, B. Y.
    Li, G. S.
    Guo, Q. Q.
    Yan, L.
    Chai, X. Z.
    Guo, Z. Q.
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1267 - 1274
  • [28] Multi-objective Jaya Algorithm for Solving Constrained Multi-objective Optimization Problems
    Naidu, Y. Ramu
    Ojha, A. K.
    Devi, V. Susheela
    ADVANCES IN HARMONY SEARCH, SOFT COMPUTING AND APPLICATIONS, 2020, 1063 : 89 - 98
  • [29] A Multi-objective Evolutionary Algorithm based on Decomposition for Constrained Multi-objective Optimization
    Martinez, Saul Zapotecas
    Coello, Carlos A. Coello
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 429 - 436
  • [30] A coevolutionary constrained multi-objective algorithm with a learning constraint boundary
    Cao, Jie
    Yan, Zesen
    Chen, Zuohan
    Zhang, Jianlin
    APPLIED SOFT COMPUTING, 2023, 148