Multiscale methods with compactly supported radial basis functions for the Stokes problem on bounded domains

被引:8
作者
Chernih, A. [1 ]
Le Gia, Q. T. [1 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Radial basis functions; Compact support; Smoothness; Wendland functions; SCATTERED DATA INTERPOLATION; DIVERGENCE-FREE; APPROXIMATION; COLLOCATION; SPACES; PDES;
D O I
10.1007/s10444-016-9458-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the application of radial basis functions (RBFs) for the approximation with collocation of the Stokes problem. The approximate solution is constructed in a multi-level fashion, each level using compactly supported radial basis functions with decreasing scaling factors. We use symmetric collocation and give sufficient conditions for convergence and consider stability analysis. Numerical experiments support the theoretical results.
引用
收藏
页码:1187 / 1208
页数:22
相关论文
共 22 条
[1]  
[Anonymous], 2007, MESHFREE APPROXIMATI
[2]  
BRENNER S. C., 2008, MATH THEORY FINITE E, VThird
[3]   Pressure projection Stabilizations for Galerkin approximations of Stokes' and Darcy's problem [J].
Burman, Erik .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (01) :127-143
[4]   Multiscale methods with compactly supported radial basis functions for Galerkin approximation of elliptic PDEs [J].
Chernih, A. ;
Le Gia, Q. T. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (02) :569-591
[5]   BESOV-SPACES ON DOMAINS IN RD [J].
DEVORE, RA ;
SHARPLEY, RC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 335 (02) :843-864
[6]   Multistep scattered data interpolation using compactly supported radial basis functions [J].
Floater, MS ;
Iske, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 73 (1-2) :65-78
[7]   Improved stability estimates and a characterization of the native space for matrix-valued RBFs [J].
Fuselier, Edward J. .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2008, 29 (03) :269-290
[8]   Sobolev-type approximation rates for divergence-free and curl-free RBF interpolants [J].
Fuselier, Edward J. .
MATHEMATICS OF COMPUTATION, 2008, 77 (263) :1407-1423
[9]   Meshless collocation: Error estimates with application to dynamical systems [J].
Giesl, Peter ;
Wendland, Holger .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (04) :1723-1741
[10]   Multiscale RBF collocation for solving PDEs on spheres [J].
Le Gia, Q. T. ;
Sloan, I. H. ;
Wendland, H. .
NUMERISCHE MATHEMATIK, 2012, 121 (01) :99-125