Weyl and Bernstein numbers of embeddings of Sobolev spaces with dominating mixed smoothness

被引:4
|
作者
Van Kien Nguyen [1 ,2 ]
机构
[1] Univ Jena, Ernst Abbe Pl 2, D-07737 Jena, Germany
[2] Univ Transport & Commun, Hanoi, Vietnam
关键词
Weyl numbers; Bernstein numbers; Mixed Sobolev spaces; Compact embeddings; S-NUMBERS; ENTROPY NUMBERS; COMPACT-OPERATORS; EIGENVALUES; BESOV; INEQUALITIES;
D O I
10.1016/j.jco.2016.04.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper is a continuation of work of the author and joint work with Winfried Sickel. Here we shall investigate the asymptotic behaviour of Weyl and Bernstein numbers of embeddings of Sobolev spaces with dominating mixed smoothness into Lebesgue spaces. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:46 / 73
页数:28
相关论文
共 50 条
  • [31] Nuclear and Compact Embeddings in Function Spaces of Generalised Smoothness
    Haroske, D. D.
    Leopold, H. -G.
    Moura, S. D.
    Skrzypczak, L.
    ANALYSIS MATHEMATICA, 2023, 49 (04) : 1007 - 1039
  • [32] Approximation and Entropy Numbers of Embeddings Between Approximation Spaces
    Fernando Cobos
    Óscar Domínguez
    Thomas Kühn
    Constructive Approximation, 2018, 47 : 453 - 486
  • [33] Approximation and Entropy Numbers of Embeddings Between Approximation Spaces
    Cobos, Fernando
    Dominguez, Oscar
    Kuehn, Thomas
    CONSTRUCTIVE APPROXIMATION, 2018, 47 (03) : 453 - 486
  • [34] Some s-numbers of embeddings of function spaces with weights of logarithmic type
    Gasiorowska, Alicja
    Skrzypczak, Leszek
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (07) : 644 - 658
  • [35] OPTIMAL EMBEDDINGS OF GENERALIZED INHOMOGENEOUS SOBOLEV SPACES ON Rn
    Ahmed, Irshaad
    Karadzhov, Georgi E.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (03): : 737 - 745
  • [36] Embeddings of weighted Sobolev spaces and degenerate elliptic problems
    Guo, ZongMing
    Mei, LinFeng
    Wan, FangShu
    Guan, XiaoHong
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (08) : 1399 - 1418
  • [37] On Best Constants for Limiting Embeddings of Fractional Sobolev Spaces
    Costa, David G.
    de Figueiredo, Djairo G.
    Yang, Jianfu
    ADVANCED NONLINEAR STUDIES, 2010, 10 (02) : 501 - 510
  • [38] Compactness of embeddings of sobolev type on metric measure spaces
    Ivanishko, I. A.
    Krotov, V. G.
    MATHEMATICAL NOTES, 2009, 86 (5-6) : 775 - 788
  • [39] Optimal Domain Spaces in Orlicz-Sobolev Embeddings
    Cianchi, Andrea
    Musil, Vit
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2019, 68 (03) : 925 - 966
  • [40] Optimal Orlicz domains in Sobolev embeddings into Marcinkiewicz spaces
    Musil, Vit
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (07) : 2653 - 2690