New Classes of Set-theoretic Complete Intersection Monomial Ideals

被引:3
作者
Pournaki, M. R. [1 ,2 ]
Fakhari, S. A. Seyed [2 ]
Yassemi, S. [2 ,3 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
[3] Univ Tehran, Coll Sci, Sch Math Stat & Comp Sci, Tehran, Iran
关键词
Arithmetical rank; Lyubeznik resolution; s-Coloring; Set-theoretic complete intersection ideal; Simplicial complex; ARITHMETICAL RANK; EDGE IDEALS; GRAPHS;
D O I
10.1080/00927872.2014.934462
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be a simplicial complex and be an s-coloring of . Biermann and Van Tuyl have introduced the simplicial complex . As a corollary of Theorems 5 and 7 in their 2013 article, we obtain that the Stanley-Reisner ring of over a field is Cohen-Macaulay. In this note, we generalize this corollary by proving that the Stanley-Reisner ideal of over a field is set-theoretic complete intersection. This also generalizes a result of Macchia.
引用
收藏
页码:3920 / 3924
页数:5
相关论文
共 9 条
[1]   ARITHMETICAL RANK OF THE CYCLIC AND BICYCLIC GRAPHS [J].
Barile, Margherita ;
Kiani, Dariush ;
Mohammadi, Fatemeh ;
Yassemi, Siamak .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (02)
[2]   On the Arithmetical Rank of the Edge Ideals of Forests [J].
Barile, Margherita .
COMMUNICATIONS IN ALGEBRA, 2008, 36 (12) :4678-4703
[3]  
Biermann J, 2013, ELECTRON J COMB, V20
[4]   COHEN-MACAULAY GRAPHS AND FACE VECTORS OF FLAG COMPLEXES [J].
Cook, David, II ;
Nagel, Uwe .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (01) :89-101
[5]  
Herzog J, 2011, GRAD TEXTS MATH, V260, P3, DOI 10.1007/978-0-85729-106-6
[6]   LYUBEZNIK RESOLUTIONS AND THE ARITHMETICAL RANK OF MONOMIAL IDEALS [J].
Kimura, Kyouko .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (11) :3627-3635
[7]   ON THE ARITHMETICAL RANK OF MONOMIAL IDEALS [J].
LYUBEZNIK, G .
JOURNAL OF ALGEBRA, 1988, 112 (01) :86-89
[9]   The arithmetical rank of the edge ideals of graphs with whiskers [J].
Macchia A. .
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2015, 56 (1) :147-158