A fractional order pine wilt disease model with Caputo-Fabrizio derivative

被引:59
作者
Khan, Muhammad Altaf [1 ]
Ullah, Saif [2 ]
Okosun, K. O. [3 ]
Shah, Kamil [1 ]
机构
[1] City Univ Sci & Informat Technol, Dept Math, Peshawar, Pakistan
[2] Univ Peshawar, Dept Math, Peshawar, Pakistan
[3] Vaal Univ Technol, Dept Math, Vanderbijlpark, South Africa
关键词
Caputo-Fabrizio (CF) fractional derivative; Pint wilt disease; Mathematical model; Fixed point theorem; Numerical simulation; NEMATODA-APHELENCHOIDIDAE; MATHEMATICAL-ANALYSIS; TRANSMISSION; NETWORKS; FLUIDS;
D O I
10.1186/s13662-018-1868-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Caputo-Fabrizio type fractional order mathematical model for the dynamics of pine wilt disease (FPWD) is presented. The basic properties of the model are investigated. The existence and uniqueness of the solution for the proposed FPWD model are given via the fixed point theorem. The numerical simulations for the model are obtained by using particular parameter values. The non-integer order derivative provides more flexible and deeper information about the complexity of the dynamics of the proposed FPWD model than the integer order models established before.
引用
收藏
页数:18
相关论文
共 28 条
[1]   Magnetohydrodynamic electroosmotic flow of Maxwell fluids with Caputo-Fabrizio derivatives through circular tubes [J].
Abdulhameed, M. ;
Vieru, D. ;
Roslan, R. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (10) :2503-2519
[2]   A comparative mathematical analysis of RL and RC electrical circuits via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives [J].
Abro, Kashif Ali ;
Memon, Anwar Ahmed ;
Uqaili, Muhammad Aslam .
EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (03)
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]   On a fractional order Ebola epidemic model [J].
Area, Ivan ;
Batarfi, Hanan ;
Losada, Jorge ;
Nieto, Juan J. ;
Shammakh, Wafa ;
Torres, Angela .
ADVANCES IN DIFFERENCE EQUATIONS, 2015,
[5]   Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative [J].
Asif, N. A. ;
Hammouch, Z. ;
Riaz, M. B. ;
Bulut, H. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (07) :1-13
[6]  
Caputo M, 2015, PROGR FRACT DIFFER A, V1, P1
[7]   A fractional calculus based model for the simulation of an outbreak of dengue fever [J].
Diethelm, Kai .
NONLINEAR DYNAMICS, 2013, 71 (04) :613-619
[8]   Cancer treatment model with the Caputo-Fabrizio fractional derivative [J].
Dokuyucu, Mustafa Ali ;
Celik, Ercan ;
Bulut, Hasan ;
Baskonus, Haci Mehmet .
EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (03)
[9]   Numerical approach of Fokker-Planck equation with Caputo-Fabrizio fractional derivative using Ritz approximation [J].
Firoozjaee, M. A. ;
Jafari, H. ;
Lia, A. ;
Baleanu, D. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 :367-373
[10]  
Khan MR, 2017, SCI REP-UK, V7, DOI [10.1038/s41598-017-13843-w, 10.1038/srep41995]