Synthesis of the LiFePO4/C core-shell nanocomposite using a nano-FePO4/polythiophene as an iron source

被引:25
作者
Liu, Jing [1 ,2 ,3 ]
Yang, Guiling [1 ,2 ]
Zhang, Xianfa [4 ]
Wang, Jiawei [1 ,2 ]
Wang, Rongshun [1 ,2 ]
机构
[1] NE Normal Univ, Inst Funct Mat, Dept Chem, Changchun 130024, Jilin, Peoples R China
[2] Mat Sci & Technol Ctr, LIB Engn Lab, Changchun 130024, Jilin, Peoples R China
[3] Shandong Univ, Minist Educ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China
[4] Heilongjiang Univ, Key Lab Funct Inorgan Mat Chem, Minist Educ, Harbin 150080, Peoples R China
关键词
Nanocomposite; Core-shell structure; High conductivity; Lithium-ion battery; Electrochemistry; RECHARGEABLE LITHIUM BATTERIES; POSITIVE-ELECTRODE MATERIALS; CARBON-COATED LIFEPO4; SOLID-STATE SYNTHESIS; CATHODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; LI-ION; COMPOSITE; NANOPARTICLES; LI3FE2(PO4)(3);
D O I
10.1016/j.jpowsour.2011.09.028
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For the first time, a LiFePO4/C core-shell nanocomposite has been synthesized using a nano-FePO4/polythiophene (PTh) as an iron source. With this method, the PTh is in situ polymerized to restrain the growth of FePO4 particles, and the typical size of FePO4/PTh particles is in the range of 20-50 nm. The optimized LiFePO4/C nanocomposite is synthesized at 750 degrees C using 40% citric acid. The prepared LiFePO4 particles show a typical size of 50-100 nm and they are fully coated by carbon of 2-4 nm thickness. The LiFePO4/C core-shell nanocomposite gives an improved high electronic conductivity and a good electrochemical behavior at high rates. Thus, this novel method is an effective and facile strategy to improve the rate performance of the LiFePO4 cathode. (C) 2011 Elsevier BM. All rights reserved.
引用
收藏
页码:253 / 259
页数:7
相关论文
共 40 条
[1]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[2]   Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J].
Chen, ZH ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1184-A1189
[3]   Functional Materials for Rechargeable Batteries [J].
Cheng, Fangyi ;
Liang, Jing ;
Tao, Zhanliang ;
Chen, Jun .
ADVANCED MATERIALS, 2011, 23 (15) :1695-1715
[4]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[5]   Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method [J].
Ding, Y. ;
Jiang, Y. ;
Xu, F. ;
Yin, J. ;
Ren, H. ;
Zhuo, Q. ;
Long, Z. ;
Zhang, P. .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (01) :10-13
[6]   Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4 [J].
Ellis, B. ;
Kan, Wang Hay ;
Makahnouk, W. R. M. ;
Nazar, L. F. .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (30) :3248-3254
[7]   Positive Electrode Materials for Li-Ion and Li-Batteries [J].
Ellis, Brian L. ;
Lee, Kyu Tae ;
Nazar, Linda F. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :691-714
[8]   Influence of Particle Size and Crystal Orientation on the Electrochemical Behavior of Carbon-Coated LiFePO4 [J].
Ferrari, Stefania ;
Lavall, Rodrigo Lassarote ;
Capsoni, Doretta ;
Quartarone, Eliana ;
Magistris, Aldo ;
Mustarelli, Piercarlo ;
Canton, Patrizia .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (29) :12598-12603
[9]   A new route to synthesize high degree polythiophene in a room temperature melt medium [J].
Geetha, S ;
Trivedi, DC .
SYNTHETIC METALS, 2005, 155 (01) :232-239
[10]   Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect [J].
Hu, Yong-Sheng ;
Guo, Yu-Guo ;
Dominko, Robert ;
Gaberscek, Miran ;
Jamnik, Janko ;
Maier, Joachim .
ADVANCED MATERIALS, 2007, 19 (15) :1963-+