Distances defined by Choquet integral

被引:0
作者
Narukawa, Yasuo [1 ]
机构
[1] Toho Gakuen, Kunitachi, Tokyo 1860004, Japan
来源
2007 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-4 | 2007年
关键词
non-additive measure; fuzzy measure; Choquet integral; distances of fuzzy sets; Hausdorff metric;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Some important inequalities in functional analysis are shown for the non-additive measure theory. As an application of the inequalities, the distances between fuzzy sets, which are generalisations of well-known distances, are introduced.
引用
收藏
页码:510 / 515
页数:6
相关论文
共 25 条
[1]  
[Anonymous], 1925, ANN MAT PUR APPL, DOI DOI 10.1007/BF02409934
[2]  
[Anonymous], 2000, FUZZY MEASURES INTEG
[3]   Relationship among continuity conditions and null-additivity conditions in non-additive measure theory [J].
Asahina, S ;
Uchino, K ;
Murofushi, T .
FUZZY SETS AND SYSTEMS, 2006, 157 (05) :691-698
[4]  
AUMANN RJ, 1974, VALUES NON ATOMIC GA
[5]   On fuzzy distances and their use in image processing under imprecision [J].
Bloch, I .
PATTERN RECOGNITION, 1999, 32 (11) :1873-1895
[6]  
Choquet G., 1954, ANN I FOURIER GRENOB, V5, P131, DOI [DOI 10.5802/AIF.53, https://doi.org/10.5802/aif.53]
[7]  
Dellacherie C., 1971, LNAI, V191, P77
[8]  
DENNEBERG D, 1994, NON ADDITIVE MEASURE
[9]   METRIC-SPACES OF FUZZY-SETS [J].
DIAMOND, P ;
KLOEDEN, P .
FUZZY SETS AND SYSTEMS, 1990, 35 (02) :241-249
[10]  
DIAMOND P, 1992, FUZZY SET SYST, V45, P123, DOI 10.1016/0165-0114(92)90099-P