A hybrid method for forecasting the energy output of photovoltaic systems

被引:126
作者
Ramsami, Pamela [1 ]
Oree, Vishwamitra [1 ]
机构
[1] Univ Mauritius, Fac Engn, Elect & Elect Engn Dept, Reduit, Mauritius
关键词
Prediction; Solar irradiance; Artificial neural network; Stepwise regression; Meteorological; SOLAR-RADIATION; POWER PREDICTION; NEURAL-NETWORK;
D O I
10.1016/j.enconman.2015.02.052
中图分类号
O414.1 [热力学];
学科分类号
摘要
The intermittent nature of solar energy poses many challenges to renewable energy system operators in terms of operational planning and scheduling. Predicting the output of photovoltaic systems is therefore essential for managing the operation and assessing the economic performance of power systems. This paper presents a new technique for forecasting the 24-h ahead stochastic energy output of photovoltaic systems based on the daily weather forecasts. A comparison of the performances of the hybrid technique with conventional linear regression and artificial neural network models has also been reported. Initially, three single-stage models were designed, namely the generalized regression neural network, feedforward neural network and multiple linear regression. Subsequently, a hybrid-modeling approach was adopted by applying stepwise regression to select input variables of greater importance. These variables were then fed to the single-stage models resulting in three hybrid models. They were then validated by comparing the forecasts of the models with measured dataset from an operational photovoltaic system. The accuracy of the each model was evaluated based on the correlation coefficient, mean absolute error, mean bias error and root mean square error values. Simulation results revealed that the hybrid models perform better than their corresponding single-stage models. Stepwise regression-feedforward neural network hybrid model outperformed the other models with root mean square error, mean absolute error, mean bias error and correlation coefficient values of 2.74, 2.09, 0.01 and 0.932 respectively. The simplified network architecture of the hybrid schemes suggests that they are promising photovoltaic output prediction tools, particularly in locations where few meteorological parameters are monitored. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:406 / 413
页数:8
相关论文
共 35 条
[1]   Calculation of the energy provided by a PV generator. Comparative study: Conventional methods vs. artificial neural networks [J].
Almonacid, F. ;
Rus, C. ;
Perez-Higueras, P. ;
Hontoria, L. .
ENERGY, 2011, 36 (01) :375-384
[2]  
[Anonymous], 2012, WORLD EN OUTL
[3]  
[Anonymous], TUTORIAL TEXTS OPTIC
[4]   Validated real-time energy models for small-scale grid-connected PV-systems [J].
Ayompe, L. M. ;
Duffy, A. ;
McCormack, S. J. ;
Conlon, M. .
ENERGY, 2010, 35 (10) :4086-4091
[5]   An integrated artificial neural networks approach for predicting global radiation [J].
Azadeh, A. ;
Maghsoudi, A. ;
Sohrabkhani, S. .
ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (06) :1497-1505
[6]   Online short-term solar power forecasting [J].
Bacher, Peder ;
Madsen, Henrik ;
Nielsen, Henrik Aalborg .
SOLAR ENERGY, 2009, 83 (10) :1772-1783
[7]  
Beyer G. G., 2009, Mesor Report D.1.1.3
[8]   Neural network based method for conversion of solar radiation data [J].
Celik, Ali N. ;
Muneer, Tariq .
ENERGY CONVERSION AND MANAGEMENT, 2013, 67 :117-124
[9]   Online 24-h solar power forecasting based on weather type classification using artificial neural network [J].
Chen, Changsong ;
Duan, Shanxu ;
Cai, Tao ;
Liu, Bangyin .
SOLAR ENERGY, 2011, 85 (11) :2856-2870
[10]   Estimation of solar radiation components incident on Helwan site using neural networks [J].
Elminir, HK ;
Areed, FF ;
Elsayed, TS .
SOLAR ENERGY, 2005, 79 (03) :270-279