The self-assembly of asymmetric block copolymers in films contacting a patterned surface

被引:2
|
作者
Neratova, I. V. [1 ,2 ]
Pavlov, A. S. [1 ]
Tsar'kova, L. A. [3 ]
Khalatur, P. G. [4 ]
机构
[1] Tver State Univ, Tver 170002, Russia
[2] Univ Ulm, D-89081 Ulm, Germany
[3] Univ Bayreuth, Lehrstuhl Phys Chem 2, D-95440 Bayreuth, Germany
[4] Russian Acad Sci, Nesmeyanov Inst Organoelement Cpds, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
DISSIPATIVE PARTICLE DYNAMICS; FORMING DIBLOCK COPOLYMER; THIN-FILMS; MICROPHASE SEPARATION; DENSITY MULTIPLICATION; LITHOGRAPHY; POLYMERS; ARRAYS; SIMULATIONS; FABRICATION;
D O I
10.1134/S0965545X11030035
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The preparation of ordered high-density polymer layers via the combined method of templated self-assembly is discussed. This approach combines the advantages of guided self-assembly of block copolymers and lithography on a topographical or chemical pattern. To implement the approach, a simulation has conducted for the first time through the use of the dissipative particle dynamics method in the NPAT ensemble. The pattern replication by asymmetric copolymers that form cylindrical phases in the bulk owing to their self-assembly near the patterned surface is studied. The effects of three patterns are described, i.e., hexagonal, rectangular, and triangular, which are characterized by one or two length scales. It is shown that the dense hexagonal pattern and the sparse rectangular and triangular patterns induce vertically oriented cylindrical domains in a thin film. The control of the orientation and ordering in the formed morphology heavily depends on the interaction between the minority component and the pattern. This effect is global in nature: The surface pattern propagates into the bulk of a film. In the case of rectangular and triangular patterns, two- and fourfold increases in their quantitites in the bulk are observed.
引用
收藏
页码:261 / 270
页数:10
相关论文
共 50 条
  • [31] Self-Registered Self-Assembly of Block Copolymers
    Wan, Lei
    Ruiz, Ricardo
    Gao, He
    Albrecht, Thomas R.
    ACS NANO, 2017, 11 (08) : 7666 - 7673
  • [32] Directed Self-Assembly of Block Copolymer Micelles onto Topographically Patterned Surface
    Lee, Dong-Eun
    Je, Nam Jin
    Yoo, Seong Il
    Lee, Dong Hyun
    LANGMUIR, 2015, 31 (47) : 12929 - 12936
  • [33] Synthesis and self-assembly of bottlebrush block copolymers
    Bowden, NB
    Runge, MB
    Dutta, S
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U1103 - U1103
  • [34] Self-Assembly of Block Copolymers in Ionic Liquids
    Xie, Ru
    Lopez-Barron, Carlos R.
    Wagner, Norman J.
    IONIC LIQUIDS: CURRENT STATE AND FUTURE DIRECTIONS, 2017, 1250 : 83 - 142
  • [35] Self-assembly of responsive polypeptide block copolymers
    Savin, Daniel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [36] Combining synthesis with self-assembly in block copolymers
    Wang, Muzhou
    Qiang, Zhe
    Akolawala, Sahil
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [37] Self-assembly of copolymers containing a polypeptide block
    Castelletto, V.
    Newby, G. E.
    Zhu, Z.
    Hamley, I. W.
    Noirez, L.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C230 - C230
  • [38] Synthesis and Self-Assembly of Conjugated Block Copolymers
    Xiao, Lin-Lin
    Zhou, Xu
    Yue, Kan
    Guo, Zi-Hao
    POLYMERS, 2021, 13 (01) : 1 - 20
  • [39] Phase transition and self-assembly in block copolymers
    Hashimoto, T
    MACROMOLECULAR SYMPOSIA, 2001, 174 : 69 - 83
  • [40] Self-assembly of chiral block and gradient copolymers
    Bloksma, Meta M.
    Hoeppener, Stephanie
    D'Haese, Cecile
    Kempe, Kristian
    Mansfeld, Ulrich
    Paulus, Renzo M.
    Gohy, Jean-Francois
    Schubert, Ulrich S.
    Hoogenboom, Richard
    SOFT MATTER, 2012, 8 (01) : 165 - 172