Predicting CaO-(MgO)-Al2O3-SiO2 glass reactivity in alkaline environments from force field molecular dynamics simulations

被引:21
作者
Gong, Kai [1 ,2 ,3 ]
White, Claire E. [1 ,2 ]
机构
[1] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08544 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Molecular dynamics simulations; Amorphous aluminosilicate; Structural descriptors; Glass reactivity; X-ray and neutron scattering; BLAST-FURNACE SLAG; CALCIUM ALUMINOSILICATE GLASSES; NON-BRIDGING OXYGEN; HIGH-RESOLUTION; ACTIVATED SLAG; SILICATE-GLASSES; PROPERTY RELATIONSHIPS; STRUCTURAL-PROPERTIES; COORDINATED ALUMINUM; FLY-ASH;
D O I
10.1016/j.cemconres.2021.106588
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this investigation, force field-based molecular dynamics (MD) simulations have been employed to generate detailed structural representations for a range of amorphous quaternary CaO-MgO-Al2O3-SiO2 (CMAS) and ternary CaO-Al2O3-SiO2 (CAS) glasses. Comparison of the simulation results with select experimental X-ray and neutron total scattering and literature data reveals that the MD-generated structures have captured the key structural features of these CMAS and CAS glasses. Based on the MD-generated structural representations, we have developed two structural descriptors, specifically (i) average metal oxide dissociation energy (AMODE) and (ii) average self-diffusion coefficient (ASDC) of all the atoms at melting. Both structural descriptors are seen to more accurately predict the relative glass reactivity than the commonly used degree of depolymerization parameter, especially for the eight synthetic CAS glasses that span a wide compositional range. Hence these descriptors hold great promise for predicting CMAS and CAS glass reactivity in alkaline environments from compositional information.
引用
收藏
页数:16
相关论文
共 91 条
  • [1] [Anonymous], 1994, Mineral. Mag
  • [2] [Anonymous], 2008, Kinetics of water-rock interaction
  • [3] Critical evaluation of strength prediction methods for alkali-activated fly ash
    Aughenbaugh, K. L.
    Williamson, T.
    Juenger, M. C. G.
    [J]. MATERIALS AND STRUCTURES, 2015, 48 (03) : 607 - 620
  • [4] Ab initio molecular dynamics simulation of Na-doped aluminosilicate glasses and glass-water interaction
    Baral, Khagendra
    Li, Aize
    Ching, Wai-Yim
    [J]. AIP ADVANCES, 2019, 9 (07)
  • [5] Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part II: Effect of Al2O3
    Ben Haha, M.
    Lothenbach, B.
    Le Saout, G.
    Winnefeld, F.
    [J]. CEMENT AND CONCRETE RESEARCH, 2012, 42 (01) : 74 - 83
  • [6] Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part I: Effect of MgO
    Ben Haha, M.
    Lothenbach, B.
    Le Saout, G.
    Winnefeld, F.
    [J]. CEMENT AND CONCRETE RESEARCH, 2011, 41 (09) : 955 - 963
  • [7] Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags
    Ben Haha, M.
    Le Saout, G.
    Winnefeld, F.
    Lothenbach, B.
    [J]. CEMENT AND CONCRETE RESEARCH, 2011, 41 (03) : 301 - 310
  • [8] MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders
    Bernal, Susan A.
    Nicolas, Rackel San
    Myers, Rupert J.
    Mejia de Gutierrez, Ruby
    Puertas, Francisca
    van Deventer, Jannie S. J.
    Provis, John L.
    [J]. CEMENT AND CONCRETE RESEARCH, 2014, 57 : 33 - 43
  • [9] Durability of Alkali- Activated Materials: Progress and Perspectives
    Bernal, Susan A.
    Provis, John L.
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2014, 97 (04) : 997 - 1008
  • [10] Ability of the R3 test to evaluate differences in early age reactivity of 16 industrial ground granulated blast furnace slags (GGBS)
    Blotevogel, Simon
    Ehrenberg, Andreas
    Steger, Laurent
    Doussang, Lola
    Kaknics, Judit
    Patapy, Cedric
    Cyr, Martin
    [J]. CEMENT AND CONCRETE RESEARCH, 2020, 130 (130)