Prostate cancer risk locus at 8q24 as a regulatory hub by physical interactions with multiple genomic loci across the genome

被引:46
作者
Du, Meijun [1 ,2 ]
Yuan, Tiezheng [1 ,2 ]
Schilter, Kala F. [1 ,2 ]
Dittmar, Rachel L. [1 ,2 ]
Mackinnon, Alexander [1 ,2 ]
Huang, Xiaoyi [1 ,2 ]
Tschannen, Michael [3 ]
Worthey, Elizabeth [3 ]
Jacob, Howard [3 ]
Xia, Shu [1 ,2 ,5 ]
Gao, Jianzhong [6 ]
Tilmans, Lori [7 ]
Lu, Yan [4 ]
Liu, Pengyuan [4 ]
Thibodeau, Stephen N. [7 ]
Wang, Liang [1 ,2 ]
机构
[1] Med Coll Wisconsin, Dept Pathol, Milwaukee, WI 53226 USA
[2] Med Coll Wisconsin, Ctr Canc, Milwaukee, WI 53226 USA
[3] Med Coll Wisconsin, Human Mol Genet Ctr, Milwaukee, WI 53226 USA
[4] Med Coll Wisconsin, Dept Physiol, Milwaukee, WI 53226 USA
[5] Huazhong Univ Sci & Technol, Tongji Hosp, Dept Oncol, Tongji Med Coll, Wuhan 430030, Peoples R China
[6] Beijing 3H Med Technol Co Ltd, Beijing 100176, Peoples R China
[7] Mayo Clin, Dept Lab Med & Pathol, Rochester, MN 55905 USA
关键词
CHROMOSOME CONFORMATION CAPTURE; LONG-RANGE INTERACTIONS; WIDE ASSOCIATION SCAN; COLORECTAL-CANCER; CHROMATIN INTERACTIONS; NUCLEAR-ORGANIZATION; SUSCEPTIBILITY LOCI; DROSOPHILA GENOME; HIGH-RESOLUTION; HUMAN-CELLS;
D O I
10.1093/hmg/ddu426
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chromosome 8q24 locus contains regulatory variants that modulate genetic risk to various cancers including prostate cancer (PC). However, the biological mechanism underlying this regulation is not well understood. Here, we developed a chromosome conformation capture (3C)-based multi-target sequencing technology and systematically examined three PC risk regions at the 8q24 locus and their potential regulatory targets across human genome in six cell lines. We observed frequent physical contacts of this risk locus with multiple genomic regions, in particular, inter-chromosomal interaction with CD96 at 3q13 and intra-chromosomal interaction with MYC at 8q24. We identified at least five interaction hot spots within the predicted functional regulatory elements at the 8q24 risk locus. We also found intra-chromosomal interaction genes PVT1, FAM84B and GSDMC and interchromosomal interaction gene CXorf36 in most of the six cell lines. Other gene regions appeared to be cell line-specific, such as RRP12 in LNCaP, USP14 in DU-145 and SMIN3 in lymphoblastoid cell line. We further found that the 8q24 functional domains more likely interacted with genomic regions containing genes enriched in critical pathways such as Wnt signaling and promoter motifs such as E2F1 and TCF3. This result suggests that the risk locus may function as a regulatory hub by physical interactions with multiple genes important for prostate carcinogenesis. Further understanding genetic effect and biological mechanism of these chromatin interactions will shed light on the newly discovered regulatory role of the risk locus in PC etiology and progression.
引用
收藏
页码:154 / 166
页数:13
相关论文
共 65 条
[1]   8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC [J].
Ahmadiyeh, Nasim ;
Pomerantz, Mark M. ;
Grisanzio, Chiara ;
Herman, Paula ;
Jia, Li ;
Almendro, Vanessa ;
He, Housheng Hansen ;
Brown, Myles ;
Liu, X. Shirley ;
Davis, Matt ;
Caswell, Jennifer L. ;
Beckwith, Christine A. ;
Hills, Adam ;
MacConaill, Laura ;
Coetzee, Gerhard A. ;
Regan, Meredith M. ;
Freedman, Matthew L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (21) :9742-9746
[2]   Multiple loci on 8q24 associated with prostate cancer susceptibility [J].
Al Olama, Ali Amin ;
Kote-Jarai, Zsofia ;
Giles, Graham G. ;
Guy, Michelle ;
Morrison, Jonathan ;
Severi, Gianluca ;
Leongamornlert, Daniel A. ;
Tymrakiewicz, Malgorzata ;
Jhavar, Sameer ;
Saunders, Ed ;
Hopper, John L. ;
Southey, Melissa C. ;
Muir, Kenneth R. ;
English, Dallas R. ;
Dearnaley, David P. ;
Ardern-Jones, Audrey T. ;
Hall, Amanda L. ;
O'Brien, Lynne T. ;
Wilkinson, Rosemary A. ;
Sawyer, Emma ;
Lophatananon, Artitaya ;
Horwich, Alan ;
Huddart, Robert A. ;
Khoo, Vincent S. ;
Parker, Christopher C. ;
Woodhouse, Christopher J. ;
Thompson, Alan ;
Christmas, Tim ;
Ogden, Chris ;
Cooper, Colin ;
Donovan, Jenny L. ;
Hamdy, Freddie C. ;
Neal, David E. ;
Eeles, Rosalind A. ;
Easton, Douglas F. .
NATURE GENETICS, 2009, 41 (10) :1058-1060
[3]   Chromosomal organization: Mingling with the neighbors [J].
Aten, Jacob A. ;
Kanaar, Roland .
PLOS BIOLOGY, 2006, 4 (05) :689-691
[4]   Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations [J].
Branco, Miguel R. ;
Pombo, Ana .
PLOS BIOLOGY, 2006, 4 (05) :780-788
[5]   Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data [J].
Cooper, Gregory M. ;
Shendure, Jay .
NATURE REVIEWS GENETICS, 2011, 12 (09) :628-640
[6]   A decade of 3C technologies: insights into nuclear organization [J].
de Wit, Elzo ;
de laat, Wouter .
GENES & DEVELOPMENT, 2012, 26 (01) :11-24
[7]   Capturing chromosome conformation [J].
Dekker, J ;
Rippe, K ;
Dekker, M ;
Kleckner, N .
SCIENCE, 2002, 295 (5558) :1306-1311
[8]   Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data [J].
Dekker, Job ;
Marti-Renom, Marc A. ;
Mirny, Leonid A. .
NATURE REVIEWS GENETICS, 2013, 14 (06) :390-403
[9]   Topological domains in mammalian genomes identified by analysis of chromatin interactions [J].
Dixon, Jesse R. ;
Selvaraj, Siddarth ;
Yue, Feng ;
Kim, Audrey ;
Li, Yan ;
Shen, Yin ;
Hu, Ming ;
Liu, Jun S. ;
Ren, Bing .
NATURE, 2012, 485 (7398) :376-380
[10]   Chromosome Conformation Capture Carbon Copy (5C): A massively parallel solution for mapping interactions between genomic elements [J].
Dostie, Josee ;
Richmond, Todd A. ;
Arnaout, Ramy A. ;
Selzer, Rebecca R. ;
Lee, William L. ;
Honan, Tracey A. ;
Rubio, Eric D. ;
Krumm, Anton ;
Lamb, Justin ;
Nusbaum, Chad ;
Green, Roland D. ;
Dekker, Job .
GENOME RESEARCH, 2006, 16 (10) :1299-1309