An experimental investigation of a PCM-based heat sink enhanced with a topology-optimized tree-like structure

被引:103
作者
Ho, J. Y. [1 ,2 ]
See, Y. S. [1 ]
Leong, K. C. [1 ]
Wong, T. N. [1 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore Ctr Printing 3D, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
基金
新加坡国家研究基金会;
关键词
Topology optimization; Phase change material; Heat sink; Selective laser melting; Passive cooling; PHASE-CHANGE MATERIAL; THERMAL MANAGEMENT; PERFORMANCE; DESIGN; ELECTRONICS; MODEL; FC-72; TUBE; FINS;
D O I
10.1016/j.enconman.2021.114608
中图分类号
O414.1 [热力学];
学科分类号
摘要
A heat sink filled with phase change material (PCM) is an efficient thermal management device which utilizes the high latent heat of fusion of PCM in the cooling process. To improve the thermal performance of the PCM-based heat sink, a topology optimization (TO) strategy is devised to develop a new class of enhanced structures. This is achieved by carrying out a comprehensive numerical study to identify the effects of various thermal transport mechanisms on the TO design by considering two different heat transfer problems, i.e., steady-state heat conduction and transient heat conduction with phase change. To enable easy fabrication and performance evaluation of the new heat sink design predicted by the TO process, the resulting heat sink with tree-like structure was fabricated by selective laser melting (SLM), a metal additive manufacturing (AM) technique. Experimental characterization of the TO heat sink was carried out using three different types of PCMs, i.e., RT35, RT35HC and RT44HC and heat fluxes ranging from 4.00 kW/m2 to 7.24 kW/m2. Our experimental results show that the TO tree-like structure heat sink has better performance, exhibiting up to 4 degrees C lower wall temperatures, than the conventional fin-structure heat sink. At low heat fluxes, the best thermal performance can be obtained with RT35HC whereas at high heat fluxes, lower wall temperatures were achieved with RT44HC. In addition, the treelike structure increases operational time by up to 13% as compared to the fin-structure heat sink. The better thermal performance of the tree-like structure heat sink is due to its optimized heat conduction paths that allow heat from the concentrated heat source to be efficiently dissipated to the PCM. This work not only demonstrates the potential of enhancing electronics cooling with TO PCM-based heat sinks, but it also outlines key guidelines for the design and implementation of TO structures for other cooling applications.
引用
收藏
页数:17
相关论文
共 49 条
[1]   Design of passive coolers for light-emitting diode lamps using topology optimisation [J].
Alexandersen, Joe ;
Sigmund, Ole ;
Meyer, Knud Erik ;
Lazarov, Boyan Stefanov .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 122 :138-149
[2]   Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection [J].
Alexandersen, Joe ;
Sigmund, Ole ;
Aage, Niels .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 100 :876-891
[3]   Thermal management of electronics: An experimental analysis of triangular, rectangular and circular pin-fin heat sinks for various PCMs [J].
Ali, Hafiz Muhammad ;
Ashraf, Muhammad Junaid ;
Giovannelli, Ambra ;
Irfan, Muhammad ;
Bin Irshad, Talal ;
Hamid, Hafiz Muhammad ;
Hassan, Faisal ;
Arshad, Adeel .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 123 :272-284
[4]   Thermal management of electronics devices with PCMs filled pin-fin heat sinks: A comparison [J].
Ali, Hafiz Muhammad ;
Arshad, Adeel ;
Jabbal, Mark ;
Verdin, P. G. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 117 :1199-1204
[5]   Experimental passive electronics cooling: Parametric investigation of pin-fin geometries and efficient phase change materials [J].
Ashraf, Muhammad Junaid ;
Ali, Hafiz Muhammad ;
Usman, Hazrat ;
Arshad, Adeel .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 115 :251-263
[6]   Thermal performance of a PCM heat sink under different heat loads: An experimental study [J].
Baby, Rajesh ;
Balaji, C. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2014, 79 :240-249
[7]   Thermal optimization of PCM based pin fin heat sinks: An experimental study [J].
Baby, Rajesh ;
Balaji, C. .
APPLIED THERMAL ENGINEERING, 2013, 54 (01) :65-77
[8]   Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling [J].
Baby, Rajesh ;
Balaji, C. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (5-6) :1642-1649
[9]  
Bendse M. P., 2003, TOPOLOGY OPTIMIZATIO
[10]   Topology optimization for heat transfer enhancement in thermochemical heat storage [J].
Chen, J. T. ;
Xia, B. Q. ;
Zhao, C. Y. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 154