RESIDUAL-BASED A POSTERIORI ERROR ESTIMATES FOR hp-DISCONTINUOUS GALERKIN DISCRETIZATIONS OF THE BIHARMONIC PROBLEM

被引:6
作者
Dong, Zhaonan [1 ,2 ]
Mascotto, Lorenzo [3 ]
Sutton, Oliver J. [4 ]
机构
[1] INRIA, 2 Rue Simone Iff, F-75589 Paris, France
[2] Ecole Ponts, CERMICS, F-77455 Marne La Vallee 2, France
[3] Univ Wien, Fak Math, A-1090 Vienna, Austria
[4] Univ Nottingham, Sch Math Sci, Nottingham NG7 2QL, England
基金
奥地利科学基金会; 英国工程与自然科学研究理事会;
关键词
discontinuous Galerkin methods; adaptivity; hp-Galerkin methods; polynomial inverse estimates; fourth order PDEs; a posteriori error analysis; FINITE-ELEMENT APPROXIMATIONS; ELLIPTIC PROBLEMS; FAMILY; CONVERGENCE; INDICATOR; PLATES; FEM;
D O I
10.1137/20M1364114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a residual-based a posteriori error estimator for a novel hp-version interior penalty discontinuous Galerkin method for the biharmonic problem in two and three dimensions. We prove that the error estimate provides an upper bound and a local lower bound on the error, and that the lower bound is robust to the local mesh size but not the local polynomial degree. The suboptimality in terms of the polynomial degree is fully explicit and grows at most algebraically. Our analysis does not require the existence of a C-1-conforming piecewise polynomial space and is instead based on an elliptic reconstruction of the discrete solution to the H-2 space and a generalized Helmholtz decomposition of the error. This is the first hp-version error estimator for the biharmonic problem in two and three dimensions. The practical behavior of the estimator is investigated through numerical examples in two and three dimensions.
引用
收藏
页码:1273 / 1298
页数:26
相关论文
共 51 条
[1]   A posteriori error estimates for fourth-order elliptic problems [J].
Adjerid, S .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (23-24) :2539-2559
[2]  
[Anonymous], 2003, Pure Appl. Math. (Amst.)
[3]  
[Anonymous], 2010, IMA J NUMER ANAL, V30
[4]   TUBA FAMILY OF PLATE ELEMENTS FOR MATRIX DISP LACEMENT METHOD [J].
ARGYRIS, JH ;
FRIED, I ;
SCHARPF, DW .
AERONAUTICAL JOURNAL, 1968, 72 (692) :701-&
[5]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[6]  
BABUSKA I, 1987, RAIRO-MATH MODEL NUM, V21, P199
[7]  
BAKER GA, 1977, MATH COMPUT, V31, P45, DOI 10.1090/S0025-5718-1977-0431742-5
[8]   hp-FEM for a stabilized three-field formulation of the biharmonic problem [J].
Banz, Lothar ;
Petsche, Jan ;
Schroeder, Andreas .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (09) :2463-2488
[9]   An error indicator for mortar element solutions to the Stokes problem [J].
Bernardi, C ;
Fiétier, N ;
Owens, RG .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2001, 21 (04) :857-886
[10]  
Boffi Daniele., 2013, Mixed finite element methods and applications, P44