Martingale Approximation and Optimality of Some Conditions for the Central Limit Theorem

被引:11
作者
Volny, Dalibor [1 ]
机构
[1] Univ Rouen, Dept Math, F-76801 St Etienne, France
关键词
Martingale approximation; Martingale difference sequence; Strictly stationary process; Markov chain; Central limit theorem; ADDITIVE-FUNCTIONALS;
D O I
10.1007/s10959-010-0275-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (X-i) be a stationary and ergodic Markov chain with kernel Q and f an L-2 function on its state space. If Q is a normal operator and f = (I - Q)(1/2)g (which is equivalent to the convergence of Sigma(infinity)(n=1) Sigma(n-1)(k=0) Q(k) f/n(3/2) in L-2), we have the central limit theorem [cf. (Derriennic and Lin in C. R. Acad. Sci. Paris, Ser. I 323: 1053-1057, 1996; Gordin and Lifsic in Third Vilnius conference on probability and statistics, vol. 1, pp. 147-148, 1981)]. Without assuming normality of Q, the CLT implied by the convergence of Sigma(infinity)(n=1) parallel to Sigma(n-1)(k=0) Q(k) f parallel to(2)/n(3/2), in particular by parallel to Sigma(n-1)(k=0) Q(k) f parallel to(2) = o(root n/log(q) n), q > 1 by Maxwell and Woodroofe (Ann. Probab. 28: 713-724, 2000) and Wu and Woodroofe (Ann. Probab. 32: 1674-1690, 2004), respectively. We show that if Q is not normal and f is an element of (I - Q)L-1/2(2), or if the conditions of Maxwell and Woodroofe or of Wu and Woodroofe are weakened to Sigma(infinity)(n=1) c(n) parallel to Sigma(n-1)(k=0) Q(k) f parallel to(2)/n(3/2) < infinity for some sequence c(n) SE arrow 0, or by parallel to Sigma(n-1)(k=0) Q(k) f parallel to(2) = 0(root n/log n), the CLT need not hold.
引用
收藏
页码:888 / 903
页数:16
相关论文
共 18 条
[1]  
[Anonymous], 1969, Soviet Math. Dokl.
[2]  
Cornfeld IP, 1982, Ergodic Theory
[3]  
CUNY C, 2009, ARXIV09040185
[4]  
CUNY C, 2009, NORM CONVERGEN UNPUB
[5]  
Derriennic Y, 1996, CR ACAD SCI I-MATH, V323, P1053
[6]   The central limit theorem for Markov chains with normal transition operators, started at a point [J].
Derriennic, Y ;
Lin, M .
PROBABILITY THEORY AND RELATED FIELDS, 2001, 119 (04) :508-528
[7]  
Gordin M.I., 1981, Third Vilnius Conf. Proba. Stat. Akad. Nauk Litovsk, V1, P147
[8]  
GORDIN M.I., 2004, STOCH DYNAM, V4, P15
[9]  
GORDIN MI, 1995, P STEKLOV I MATH, V195
[10]  
Gordin MI., 1978, Sov. Math. Dokl, V19, P392