Darboux transformation for the NLS equation

被引:4
作者
Aktosun, Tuncay [1 ]
van der Mee, Cornelis [2 ]
机构
[1] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
[2] Univ Cagliari, Dept Math & Informat, I-09123 Cagliari, Italy
来源
NONLINEAR AND MODERN MATHEMATICAL PHYSICS | 2010年 / 1212卷
基金
美国国家科学基金会;
关键词
Darboux transformation; Marchenko equation; Gel'fand-Levitan equation; Zakharov-Shabat system; NLS equation; nonlinear Schrodinger equation;
D O I
10.1063/1.3367060
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze a certain class of integral equations associated with Marchenko equations and Gel'fand-Levitan equations. Such integral equations arise through a Fourier transformation on various ordinary differential equations involving a spectral parameter. When the integral operator is perturbed by a finite-rank perturbation, we explicitly evaluate the change in the solution in terms of the unperturbed quantities and the finite-rank perturbation. We show that this result provides a fundamental approach to derive Darboux transformations for various systems of ordinary differential operators. We illustrate our theory by providing the explicit Darboux transformation for the Zakharov-Shabat system and show how the potential and wave function change when a simple discrete eigenvalue is added to the spectrum, and thus we also provide a one-parameter family of Darboux transformations for the nonlinear Schrodinger equation.
引用
收藏
页码:254 / +
页数:2
相关论文
共 13 条
[1]  
Ablowitz M., 1981, SOLITONS INVERSE SCA, DOI [10.1137/1.9781611970883, DOI 10.1137/1.9781611970883]
[2]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[3]   Exact solutions to the focusing nonlinear Schrodinger equation [J].
Aktosun, Tuncay ;
Demontis, Francesco ;
van der Mee, Cornelis .
INVERSE PROBLEMS, 2007, 23 (05) :2171-2195
[4]   A unified approach to Darboux transformations [J].
Aktosun, Tuncay ;
van der Mee, Cornelis .
INVERSE PROBLEMS, 2009, 25 (10)
[5]  
Crum M, 1955, Q. J. Math., V6, P121
[6]   INVERSE SCATTERING ON THE LINE [J].
DEIFT, P ;
TRUBOWITZ, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (02) :121-251
[7]  
Gu C., 2004, Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry
[8]  
Levitan B.M., 1984, INVERSE STURM LIOUVI
[9]  
Marchenko, 1986, STURM LIOUVILLE OPER
[10]  
Matveev V.B., 1991, Darboux Transformations and Solitons